
Workshop on Scientific Applications of Computing 2015

Python
1

Department of Computer Science And EngineeringEuropean University Cyprus

Workshop on Scientific Applications of Computing, 27th Oct. 2015

VICKY PAPADOPOULOU LESTA, Assistant Professor, Member at AHPC group
MICHALIS KYPRIANOU, member of the AHPC group(internship project)

Workshop on Scientific Applications of Computing 2015

Python- General Information
 Designed from Guido van Rossum in 1991 at the National Research Institute for Mathematics and Computer Science in the Netherlands.
 Derived from many other languages, including ABC, Modula-3, C, C++, Algol-68, and Unix shell and other scripting languages.
 Python is copyrighted.
 Python source code is now available under the GNU General Public License (GPL).
 Latest version is 3.5.0

2

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

What is Python?
 Python is Interpreted

 Python is processed at runtime by the interpreter.
 Python is Interactive:

 You can interact with the interpreter directly to write your programs.
 Python is Object-Oriented:

 supports Object-Oriented style or technique of programming
 Python is a Beginner's Language:

 Python is a great language for the beginner-level programmers

3

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Applications for Python
 Web and Internet Development
 Scientific and Numeric
 Education
 GUIs
 System programming

Workshop on Scientific Applications of Computing 2015

4

Workshop on Scientific Applications of Computing 2015

Compilers and Interpreters
 Programs written in high-level languages must be translated into machine language to be executed
 Compiler: translates a in high-level language program into separate machine language program

Machine language program can be executed at any time

Workshop on Scientific Applications of Computing 2015

Compilers and Interpreters
 Interpreter: translates and executes instructions in high-level language program

 Interprets one instruction at a time,
 No separate machine language program

Workshop on Scientific Applications of Computing 2015

6

Workshop on Scientific Applications of Computing 2015

Why Python?
 Programs in Python are typically much shorter than equivalent C,

C++, or Java programs, for several reasons:
 The high-level data types allow you to express complex operations in a

single statement;
 Statement grouping is done by indentation instead of beginning and

ending brackets;
 No variable or argument declarations are necessary.

7

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Get Python for free 
 It is an open source language

 Download for free:
https://www.python.org/downloads/

8
Workshop on Scientific
Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Python Interpreter:
 Read and Execute Python Programs
 Two modes:

 Script mode:
 Load an execute python programs

 Interactive mode
 Write statements and execute them in command line

 IDLE (Integrated DeveLopment Environment) (Python GUI) provides both
 Interactive mode
 script mode

9

Workshop on Scientific Applications of Computing 2015

Python Editors
 Some popular editor to write program in python are

 Sublime Text
 Vim
 Emacs
 Notepad++
 TextWrangler

10

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Anaconda Platform
 FREE enterprise-ready Python distribution for data analytics, processing, and scientific computing.
 Anaconda comes with

 Python 2.7 or Python 3.4 and
 100+ cross-platform tested and optimized Python packages.

 Get it free from:
 https://www.continuum.io/downloads

Workshop on Scientific Applications of Computing 2015

11

Workshop on Scientific Applications of Computing 2015

Hello World in Python..
 print ‘Hello World!’

 Help?!
 help(‘statement’)
 Eg:
 help(‘print’)

Workshop on Scientific Applications of Computing 2015

12

Workshop on Scientific Applications of Computing 2015

Simple Input-Output
 Example 1

n =input (‘Give me a number..')
print ‘You gave me the number: ’, n

 Example 2
n =input (‘Give me a String..') # n = raw_input (‘Give me a string..')
print ‘You gave me the string: ’ , n

Workshop on Scientific Applications of Computing 2015

13
Test it!
(inputOuputNumber.py)

Workshop on Scientific Applications of Computing 2015

Variables and Input-Output
 Syntax:
Variable = input (‘message’)

 Example
num1 = input('Give first number ')
num2 = input('Give second number ')
sum = num1+num2
print 'Sum is:', sum

14
Test it!
(Add_Two_Numbers.py)

Workshop on Scientific Applications of Computing 2015

Variables
 A name that represents a value stored in the computer memory
 Declaration, creation of a variable is done by:

 Assignment operation
 Examples: x=1 and x =“Python”

 Garbage collection:
 removal of values that are no longer referenced by variables
Carried out by Python interpreter

 A variable can refer to item of any type
 Variable that has been assigned to one type can be reassigned to another type

15

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Data Types
 Data Type:

 Strings
 Floats
 Integer
 Lists
 Tubles
 Sets
 Dictionaries

Workshop on Scientific Applications of Computing 2015

16

Workshop on Scientific Applications of Computing 2015

A note on Constant Variables..
 There no constant variable in Python
 How can declare constant variable?

Create a function
 Declare local variables in a function
 and use it as constant

17

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Calculations, Arithmetic Operators
 Examples: You can write calculations in shell
10 + 5 vs (10.5 + 5.5)

 15 and 15.5
10 – 5 vs (10.5-5.5)

 5 vs 5.0
10 / 4 vs 10.0/4 (floating point division)

 2 vs 2.5
9 // 4 or 9.3//4 (integer division)

 2 and 2
10 % 2 vs 10.5 % 2.5 (remainder)

 0 vs 0.5
10.5**2 (exponent operator)

 110.25

18

Workshop on Scientific Applications of Computing 2015

Test it!

Workshop on Scientific Applications of Computing 2015

Mixed-Type Expressions and Data Type Conversion

 Example1
x=15.7
y=int(x)
print 'y = ' ,y

19

 Data type resulting from math operation depends on data types of operands
 Two int values: result is an int
 Two float values: result is a float
 int and float: int temporarily converted to float, result of the operation is a float

Test it!
(Add_Two_Numbers.py dataConversion)

Workshop on Scientific Applications of Computing 2015

Decision Statements
 Syntax:

 if <condition>:
statements1

else:
statements2

 Example:
 X = 10if (X!=10): print(“Xis not equal to 10. its is equal to “, X) else print((“Xis equal to 10’)

20
 IMPORTANT NOTE:
 The statement1/statements2 or nested if stms are specified by indentation.or :

elif <condition2>
<statements3>

else:
<statements2>

Example2:
► if x==10

print(“X is equal to 10.) elif x==9print(“X is equal to nine.”) else:print(“X is less or equal to eight. ”)

Workshop on Scientific Applications of Computing 2015

Repetition structures: While Loop
 Syntax

while <expression>:statements
 Example

budget = float(input('Enter amount budgeted for the month: '))while spent != 0:spent = float(input('Enter an amount spent(0 to quit): '))
total += spent if budget >= total:print 'You are $', (budget - total), 'under budget. WELL DONE!'

else budget < total:difference = total - budgetprint 'You are $', total – budget, 'over budget. PLAN BETTER NEXT TIME!'

21
NOTE:blocks are identified through indentation!

Test it!
(whileLoopExample.py)

Workshop on Scientific Applications of Computing 2015

A count-control Repetition structure: For Loop
 Syntax

for variable in [val1, val2, etc]:
statements

 ExampletotalRainfall=0
for month in [1,2,3,4,5,6,7,8,9,10,11,12]:

monthRainfall = float(input('Enter the rainfall amount of \
the month:’))
totalRainfall += totalRainfall

print'Total year’s rainfall: ', totalRainfall,‘cms'

22
NOTE:Nested blocks are identified through indentation!

Test it!
(forLoopExample.py)

Workshop on Scientific Applications of Computing 2015

Using the range with the for Loop
 For syntax:

for variable in range statements

 ExampletotalRainfall=0
for month in range(1,13)

print ‘current month is ’, month
monthRainfall = float(input('Enter the rainfall amount of the\
month:’))
totalRainfall += totalRainfall

print'Total year’s rainfall: ', totalRainfall,‘cms'

23
►Range syntax:►range(start, stop[, step])

 Starting value is start
 stop is not included
 If the step is omitted, it defaults to 1.
 If the start is omitted, it defaults to 0.

►Range syntax:►range(start, stop[, step])
 Starting value is start
 stop is not included
 If the step is omitted, it defaults to 1.
 If the start is omitted, it defaults to 0. Test it!

(forLoopExample.py)

Workshop on Scientific Applications of Computing 2015

Control Statements
 Break Statement

 Stop Loop
 Example

 for letter in 'Python':
if letter == 'h':

break
print ("Current Letter :", letter)

 Output
 Current Letter :P

Current Letter :y
Current Letter :t

24

Workshop on Scientific Applications of Computing 2015

Control Statements
 Continue Statement

 Reject all the remaining statements and moves to the top of the loop
 Example

 for letter in 'Python':
if letter == 'h':

Continue
print ("Current Letter :", letter)

 Output
 Current Letter :P

Current Letter :y
Current Letter :t
Current Letter :o
Current Letter :n

25

Workshop on Scientific Applications of Computing 2015

Modules and Packages
 A module is a file containing Python definitions and statements.
 Python comes with a standard library functions stored in modules
 Example: random module
 To import a module  import a_module
 Packages: a collection of modules

 Examples: Numpy, Scipy, Matplotlib
 To import a package:

 import a_module or from a_module import something
 Example:

 import numpy or from numpy import pi

26

Workshop on Scientific Applications of Computing 2015

Using else Statement with Loops
 If the else statement is used with a for/while loop,
 the else statement is executed when the loop has exhausted iterating the list/when the condition becomes false.

 While-else Syntax:
while <condition>: statementselse:statements

27

Hands-on Exercise 1!
Guessing Number game. (EX1_loops_Guess.py)
• Write a program where the user has to guess a number between a range of 1 to n guessed by the program.
• The player inputs his guess.
• The program informs the player, if this number is larger, smaller or equal to the secret number.
• If the player wants to gives up, he or she can input a 0 or a negative number.

Workshop on Scientific Applications of Computing 2015

Introduction to Functions
 Function: group of statements within a program that perform as specific task

 Usually one task of a large program
 Functions can be executed in order to perform overall program task

28

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Void Functions and Value-Returning Functions
 A void function:

 Simply executes the statements it contains and then terminates.
 A value-returning function:

 Executes the statements it contains, and then it returns a value back to the statement that called it.
 Examples: input, int, and float functions

29

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Function Syntax
 Syntax:

 Void Function:
def fname (arguments)

statements
 Value-Returning Function:

def fname (arguments)
statements
return <expression>

 Call a function syntax:
fname(value1,value2,etc)

30

Workshop on Scientific Applications of Computing 2015

NOTE:
 Each block must be indented

 Lines in block must begin with the same number of spaces

Workshop on Scientific Applications of Computing 2015

Function Examples
1st Example

def test():
print(“Hello Python”)

test()
Output
Hello Python

2rd Example
def test(arg1,arg2):

return(arg1+arg2)

arg1 = 5
arg2 = 10
sum = test(arg1,arg2)
print (“sum is: ”,sum)
Output
Sum is: 15

31

Workshop on Scientific Applications of Computing 2015

Examples – Call Functions
1ST Way: by position
def test(arg1,arg2)

return(arg1+arg2)
arg1 = 5
arg2 = 10
sum = test(arg1,arg2)
print (“sum is: ”,sum)
Output

Sum is: 15

2d Way: by name
def test(arg1,arg2)

return(arg1-arg2)
sum = test(arg2=10,arg1=5)
print (“sum is: ”,sum)
Output

Sum is: -5

32

Workshop on Scientific Applications of Computing 2015

Local Variables in Functions
 Local variable: variable that is assigned a value inside a function
Belongs to the function in which it was created

Only statements inside that function can access it

33

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Passing Arguments to Functions
 Argument: piece of data that is sent into a function

 Function can use arguments in calculations
 Syntax - function definition:

def function_name(formal parameter):

 When calling the function, the argument is placed in parentheses following the function name
 Syntax- function call:

function_name(actuall parameter):

34

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Returning Multiple Values
 A function can return more than one values
 Syntax:

 Return expression1, expression2, etc.
 When you call the function in an assignment statement, you need to use more than one variables:

 first, second, etc = function_name (parameters)

Workshop on Scientific Applications of Computing 2015

35

Workshop on Scientific Applications of Computing 2015Workshop on Scientific Applications of Computing 2015

36Hands-on Exercise 2!
Test Grade and Average (EX2_grades.py)
 Write a program that asks the user to enter five test scores.
 The program should display a letter grade for each score and the average test score.
 Define two functions:
 Calc_average function to calculate the average of the scores
 Determine_grade function to calculate the average of the

scores
 Note: letter score is a 10 point system (A = 90-100 B = 80-89, etc)

Workshop on Scientific Applications of Computing 2015

Python’s Functions Passing Parameters Methods
 When a function is called, the parameters are passed using call-by-value or call-by-reference?

 Neither!
 Python uses "Call-by-Object", also called "Call by Object Reference" passing parameter method for the function calls.

 Passed objects of mutable(changeable) types can be changed by the called function
 Passed objects of immutable types cannot be changed by the called function.

 Some immutable types:
 int, float, long, complex, str, bytes, tuple

 Some mutable(changeable) types:
 list, set, dict, byte array

37

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Strings
 Syntax:

 variable =“Txt”
 Print:

 print(variable[range])
 Other Operations

 "hello"+"world" "helloworld" # concatenation
 "hello"*3 "hellohellohello" # repetition
 "hello"[0] "h" # indexing
 "hello"[-1] "o" # (from end)
 "hello"[1:4] "ell" # slicing
 len("hello") 5 # size
 "hello" < "jello" 1 # comparison
 "e" in "hello" 1 # searc

38

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Sequences
 Sequence:

 An object that contains multiple items of data
 The items are stored in sequence one after another

 Python provides different types of sequences, including
 Lists
 Tuples

 The difference between these:
 A list is mutable (changeable, variable) and a tuple is immutable
 Syntax difference: [list] vs (tuble)

39

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Introduction to Lists
 List: an object that contains ordered data items

 syntax: list = [item1, item2, etc.]
 Example: my_list =[10,20,30,40]

 List element: An item in a list
 syntax: list[item position]

Index of 1st element in position 0 in the list
 Examples: my_list[1]  20 , my_list[4]  error

 A list can hold items of different types
E.g: List=[1,2,’mike’]

 print function can be used to display an entire list

40

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

The Repetition Operator and Iterating over a List
 Repetition operator *:

makes multiple copies of a list and joins them together
 Syntax: list * n
 The symbol * is a repetition operator when applied to a sequence and an integer n
 Example: (a= 'Hello’) a*2  HelloHello

 You can iterate over a list using a for loop
 syntax: for x in list:
 Example: a=[100,10,1,0]

for n in a:
print n

41

Workshop on Scientific Applications of Computing 2015

Test it!
(ListsIterating.py)

Test it!

Workshop on Scientific Applications of Computing 2015

Lists Are Mutable
 Mutable sequence: the items in the sequence can be changed

Lists are mutable, and so their elements can be changed
Example:
numbers=[0]*5
index =0
While index < len(numbers):

numbers[index]=99
index+=1

42

Workshop on Scientific Applications of Computing 2015

Test it!
(ListsMutableExample.py)

Workshop on Scientific Applications of Computing 2015

List Slicing
 Slice: A span of items that are taken from a sequence

List slicing syntax: list[start : end]
Span is a list containing copies of elements from start up to, but not including, end
If start not specified, 0 is used for start index
If end not specified, len(list) is used for end index

Slicing expressions can include a step value and negative indexes relative to end of list

43

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Example:
letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
letters[2:5] = ['C', 'D', 'E']
letters[2:5] = []
letters[:] = []

Workshop on Scientific Applications of Computing 2015

44

Test it!
(ListsSlicing.py)

Workshop on Scientific Applications of Computing 2015

Finding Items in Lists with the in Operator
 The in operator

 determines whether an item is contained in a list
 Syntax: item in list

 Returns True if the item is in the list, or False if it is not in the list
 Use the not in operator to determine whether an item is not in a list
 Example:

list = [1, 2, 3, 4]
3 in list

true

45

Workshop on Scientific Applications of Computing 2015

Test it!

Workshop on Scientific Applications of Computing 2015

List Methods and Useful Built-in Functions
 append(item):

 used to add items to a list – item is appended to the end of the existing list
 index(item):

 used to determine where an item is located in a list
Returns the index of the first element in the list containing item
Raises ValueError exception if item not in the list

46

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

List Methods and Useful Built-in Functions (cont’d.)
 insert(index, item):

 Used to insert item at position index in the list
 sort():

 Used to sort the elements of the list in ascending order
 remove(item):

 Removes the first occurrence of item in the list
 reverse():

 Reverses the order of the elements in the list

47

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Two or more Dimensional Lists
 Two-dimensional list: A list that contains other lists as its elements

Also known as nested list
Example
matrix = [[1,2,3,4],

[5,6,7,8],
[9,10,11,12]]

48

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Vector structures of Numpy Package
 Use: from numpy import array
 Example

 r=array([1,2,3])
 u =array([-1,-2,-3])
 r+u  addition of two arrays
 r*u  dot product of two arrays!
 a-10
 (a+3)*2

Workshop on Scientific Applications of Computing 2015

49
 Use: from numpy import array
 Example

 r=matrix([1,2,3])
 u =matrix ([-1,-2,-3])
 r+u  addition of two arrays
w=r*u.T  matrix multiplication!

Workshop on Scientific Applications of Computing 2015

Tuples
 Tuple: An immutable sequence

 Very similar to a list
Once it is created it cannot be changed

 Syntax: tuple_name = (item1, item2)
 : () instead of [] to distinguish from lists

 Tuples support operations as lists
 Subscript indexing for retrieving elements
Methods such as index
 Built in functions such as len, min, max
 Slicing expressions
 The in, +, and * operators

50

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Tuples (cont’d.)
 Tuples do not support the methods:

 append
 remove
 insert
 reverse
 Sort

 Example
 tup1 = (12, 34.56);
 tup2 = ('abc', 'xyz');
 print 'tup1 = ', tup1[0:1]

51

Workshop on Scientific Applications of Computing 2015

Test it!
(ListsSlicing.py)

Workshop on Scientific Applications of Computing 2015

Dictionaries
 Dictionaries: object that stores a collection of data

 Each element consists of a key and a value
Often referred to as mapping of key to value
Key must be an immutable object

 Dictionary is mutable
 To retrieve a specific value, use the key associated with it
 Syntax: dictionary = [key1:value1,key2:value2…]

 dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};
 Example:

print "dict['Name']: ", dict['Name']
print "dict['Age']: ", dict['Age']

52

Workshop on Scientific Applications of Computing 2015

Test it!

Workshop on Scientific Applications of Computing 2015

Sets
 Sets: object that stores a collection of data in same way as mathematical set

 All items must be unique
 Set is unordered
 Elements can be of different data types
 There are mutable

 Sets support mathematical operations (union, intersection, difference)
 Syntax: set = {item1,item2,…}
 Example: a = set('abracadabra')

b = set('alacazam')
a-b

53

Workshop on Scientific Applications of Computing 2015

Test it!

Workshop on Scientific Applications of Computing 2015

Built-in Functions
 The Python interpreter has a number of functions and types built into it that are always available.
 You can use a module of functions using import:
 Eg.
 import math

54

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Built-in Function
 Table with built- in Function

55

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Reading and Writing Files
 Syntax

 f = open(filename,mode)
filename = ‘ name of file that we want to have access
mode = ‘optional string that specifies the mode in which the file is opened’

 Example
 f=open(‘text.txt’,’r’)

56

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Reading and Writing Files-Continue
 Mode

Character Meaning
'r' open for reading (default)
'w' open for writing, truncating the file first
'x' open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of the file if it exists
'b' binary mode
't' text mode (default)
'+' open a disk file for updating (reading and writing)
'U' Universal newlines mode (deprecated)

57

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

More on Modules
 Split your program in a several files, called module.
 Module can be imported into other modules or into the main module
 Syntax

 import filename.py

 Create your own module: (example1.py)
 Example: def name(n)

print (n)
def surname(s)

print (s)

58

Workshop on Scientific Applications of Computing 2015

 To install a module:
 pip install module_name
 Example: pip install numpy

Workshop on Scientific Applications of Computing 2015

Classes - Object
 Class

 Is an extensible program-code-template for creating object
 Object

 Is a location in memory having a value and possibly referenced by an identifier.
Can be variable, data structure, function

59

Workshop on Scientific Applications of Computing 2015

Workshop on Scientific Applications of Computing 2015

Classes
 Syntax

 class class_name:
statements

60
 Example

class Coin:
def __init__(self):

self.sideup = 'Heads'
def toss(self):

if random.randint(0, 1) == 0:
self.sideup = 'Heads'

else:
self.sideup = 'Tails'

def get_sideup(self):
return self.sideup

Test it!
Classes_coin.py

Workshop on Scientific Applications of Computing 2015

Classes

 Example
 class c_name:

def _init_(self,num1,num2)
self.n1=num1
self.n2=num2

def sum…

61

Workshop on Scientific Applications of Computing 2015

Syntax: def __init__ (self,vars):

 Attribute variables are public
 Can be accessed only with: classMame.variable_name

Self parameter:
references the specific attribute

► Initializer method-Example:
 def __init__(self,var1,var2)

self.v1=var1
self.v2=var2

Workshop on Scientific Applications of Computing 2015

Classes (cont.)
 To create a new instance of a class call the initializer method

 Format: My_instance = Class_Name()
 Example: my_coin=Coin()

 To call any of the class methods using dot notation:
 Format: My_instance.method()
 Example: my_coin.toss()

 To make an attribute private
place two underscores (__) in front of attribute name
Example: self.sideup = 'Heads'

Workshop on Scientific Applications of Computing 2015

62

Test it!

Workshop on Scientific Applications of Computing 2015Workshop on Scientific Applications of Computing 2015

63Hands-on Exercise 3!
Test Grade and Average
 Write a class named Car that has the following data attributes:

 __year_model (for the car's year model), __make (for the make of the car) and __speed (for the car's current speed).
 The Car Class should have an __init__ method that accepts the car's year model and make data attributes. It should also assign 0 to the __speed data attribute.
 The class should also have the following methods:

 accelerate - the accelerate method should add 5 to the speed
 brake - the brake method should subtract 5 from the speed
 get speed - the get_speed method should return the current speed

 Next, design a program that creates a Car object, and then calls the accelerate method five times. After each call to the accelerate method, get the it. Then call the brake method five times. After each call to the brake method, get the current speed of the car and display it.

