An Introduction to Parallel Computing/
Programming

Vicky Papadopoulou Lesta

Astrophysics and High Performance Computing Research Group
(http://ahpc.euc.ac.cy)

Dep. of Computer Science and Engineering
European University

The presentation is based on material of the book:
An Introduction to Parallel Programming

Peter Pacheco

= Topic 1:

Why Parallel Computing?

Why we need ever-increasing
performance..

Climate modeling

Protein folding

Misfolded proteins related to diseases like Parkinson,
Alzheimer.

$ e
" ‘%{;\ D ¢

Drug discovery

Enerqy research

Big Data processing!

e

Past: Serial hardware and software

programs

Computer runs one
program at a time.

output

Past : Computer architecture: The von Neumann

Architecture

CPU

ALU Control
Fegisters Registers
| | | |
Control Arithmetic
Interconnect U n It Lng-lc
Unit
Address Contents
| I |
I I |
I I |
Main Memory

Increasing single processor performance

= From 1986 — 2002, microprocessors were increasing
In performance an average of 50% per year

» by increasing density of transistors.

= Since then, it's dropped to
about 20% increase per
year..

circuit board with a 4x4 array
of SYNAPSE-developed chips, each
chip using 5.4 billion transistors.

1stor count

Trans

Increasing density of transistors

Microprocessor Transistor Counts 1971-2011 & Moore's Law

2,600,000,000 -

1,000,000,000

100,000,000 -

10,000,000 -

1,000,000 —

100,000 -

10,000 —

2,300 -

16-Core SPARC T3
Séx-Core Core 7,

San-Core Xeon 7400, .' WU0-Cone Xeon WesTRrE-E)

Duzal-Cone Barsiurn 2 @ .{,-E-ﬂ'.h‘t POWERT
avoro, GERRIERNN
powerse 'y M X Nehalem-EX

[Eanmurn 2 wedh GWB cache @ S =, Sx-Core o 2400
AMD K10 core 7 |
2 Do
EAfim 2 w
AN KB
Peniuma 9’ AR
A vl
curve shows ransistor /ﬁm b
count doubling every / AAMDES
two years / Bosemima
7 eavDks
PamRam
BO4E50
."‘{-(-
803868,
mzese
BA0008 /
$A0185
yd
s0ne® whoss
B0E%
0200 v ess0n
BB l IR0
B2 @MOS5 6502
A0048. /\RCa 1802
I T T T 1
1971 1980 1990 2000 2011

Date of introduction

Heating Problems..

= Smaller transistors =
faster processors.

10,000,000

» Faster processors =

increased power o —
N m tl on. 09000 (sou?m;lntd,mupedia,nogumml -
CorEHmp -
= Increased power - -
consumption = increased

heat.

100

= Increased heat =

unreliable processors.

ETransistors (000)
Ulock Speed (MHz)

& Power (W)

® Perf ftlock (ILP)

0 | | |

1970 1975 1980 1985 1990 1995 2000 2005 2010

Solution

2 Use multicore processors (CPUs) on a single chip

2 called cores

An Intel Core 2 Duo E6750 dual-core processor.

2 Introducing parallelism!!!

Now it’s up to the programmers

= Adding more processors doesn’t help much if
programmers aren’'t aware of them...

m ... or don’t know how to use them.

s Serial programs don’t benefit from this approach

%

(in most cases).

How to write parallel programs

= Running multiple instances of a serial program
often isn’t very useful.

= [hink of running multiple instances of your
favorite game.

= What you really want is for
it to run faster.

Approaches to the serial problem

= Rewrite serial programs so that they're parallel.

= Write translation programs that automatically
convert serial programs into parallel programs.

» This is very difficult to do.
> Success has been limited.

Example

= Compute n values and add them together.

s Serial solution:

sum = 0;

for (i = 0; 1 < n; i++) {
¥ = Compute_next_value(. . .);:
sum += x;

Example (cont.)

= \We have p cores, p much smaller than n.

s Each core performs a partial sum of
approximately n/p values.

fzg*my_sum = {);

my Tirst-1i = .

my last i = ,

for (my_i = my_first_i; my_i < my_last_i; my_i++) {
my_X = Compute_next_vwvalue(. . .);
my_sum 4= my_Xx;

% Each core uses it's own private variables

and executes this block of code
independently of the other cores.

Example (cont.)

m After each core completes execution of the code,
a private variable my_ sum contains the sum of
the values computed by its calls to
Compute next value.

m EX., 8 cores, n =24, then the calls to
Compute next value return:

14,3, 9,28, 51,1, 52,7, 25,0, 41,8, 6,51, 2,3,9

Example (cont.)

= Once all the cores are done computing their
private my_sum,

» they form a global sum by sending results to
a designated "“master” core

> which adds the final result...

Example (cont.)

if (I'm the master eore) |
sum = my_X;
for each core other than myself {

recejive value from core;
sum += value;

E
} else |
send my_X to the master;

Example (cont.)

my_sum 8 19 7 15 7 13 12 14

Global sum
8+19+7+15+7+13+12+ 14 =95

my_sum 95 19 7 15 7 13 12 14

But walit!

There’s a much better way
to compute the global sum.

Better parallel algorithm

s Don’t make the master core do all the work.

= Share it among the other cores.

s Pair the cores so that core 0 adds its result with
core 1’s result.

s Core 2 adds its result with core 3’s result, etc.

= Work with odd and even numbered pairs of
cores.

Better parallel algorithm (cont.)

= Repeat the process now with only the evenly
ranked cores.

»> Core 0 adds result from core 2.
> Core 4 adds the result from core 6, efc.

= Now cores divisible by 4 repeat the process, and
so forth, until core 0 has the final result.

Multiple cores forming a global
sum

Analysis

= |n the first example, the master core performs 7
receives and 7 additions.

= |n the second example, the master core performs
3 receives and 3 additions.

= [he improvement is more than a factor of 2!

Analysis (cont.)

= [he difference is more dramatic with a larger
number of cores.

s |If we have 1000 cores:

> The first example would require the master to
perform 999 receives and 999 additions.

» The second example would only require 10
receives and 10 additions.

= [hat’'s an improvement of almost a factor of 100!

How do we write parallel programs?

Data parallelism s Task parallelism
» Partition the data used > Partition various
in solving the problem tasks carried out
among the cores. solving the
> Each core carries out problem among
similar operations on the cores.
it's part of the data.
Data Paraliel Task Parallel
| | | I I

.a;}
= = (=t %_

|
i | 5 I +

Data Parallelism

= Definition: each process does the same work on unique
and independent pieces of data

s Examples:

> 8 farmers mow §
a lawn
> 2 farmers paint T o, Ty
a storage area | : @
T y

= Usually more scalable than functional parallelism

= Can be programmed at a high level with OpenMP

Task Parallelism

m| Definition: each processor executes a different process/
thread (same or different code) on the same or different data.

s Usually each processor executes a different process or an
iIndependent program

s Processes communicate with one another as they work by
passing data from one process/thread to the next @

= More suitable for distributed computation

/1N
s Examples: @ @

» Independent Monte Carlo Simulations
» ATM Transactions

Problem Data Set

lll.-
In'
/

3
\

| 1
II I|

= Example follows..

Professor P

15 questions
300 exams

Professor P’s grading assistants

Division of work —
data parallelism

100 exams

TA#1 @
@ TA#3

100 exams

@TA#Z

100 exams

Division of work —
task parallelism

TA#1

TA#3

'7
(
V'
V'
V'

— - Questions 11 - 15

TA#2

Questions 6 - 10

Division of work —data parallelism

sum = 0;

for (i = 0; 1 < n; i++) {
X = Compute_next_value(. . .);
sum += X,

Division of work —task parallelism

if (I'm the master core)
sum = my_X;
for each core other than myself {
receive wvalue from core;
sum += value;

t

Tasks
} else |
send my_x to the master; 1) FQecehAng
} 2y Addition

Terminology (1/3)

= Serial code is a single thread of execution working on a single
data item at any one time

= Parallel code has more than one thing happening at a time.
This could be

» Multiple threads of execution in a single executable on
different data

» Multiple executables (processes) all working on the same
problem (in on or more programs)

» Any combination of the above

= Task is a program or a function.

» Each task has its own virtual address space and may have multiple
threads

Terminology (2/3)

= Traditional CPU: a single central processing unit (CPU) on
a chip.

= Multi-core processor/ socket : A single chip containing two
or more CPUs called "cores

= A node may have multiple cores...

E‘-F'U Cone ‘-'.‘.PLI Core
L1 Cadm L1 'I:Irnhn

Bﬂ-::k sn:le
Bus Interface
A
L2 Caches

t Front side
.

e

Terminology (3/3)

= Node: a actual physical self contained computer unit that
has its own processors, memory, |/O bus and storage.

ol Lol

Supercomputer - each blue
light is a node

Mode - standalone
Von Meumann computer

CPU ! Processor / Socket - each
has multiple cores / processors.

£l ghnfed 43 Ciche] EH|: - Chaed L3 Cottre = - |

Coordination

s Cores usually need to coordinate their work.

a Communication — one or more cores send their
current partial sums to another core.

s Load balancing — share the work evenly among
the cores so that one is not heavily loaded.

= Synchronization — because each core works at its
own pace, make sure cores do not get too far
ahead of the rest.

Type of parallel systems

= Shared-memory

> The cores can share access to
the computer's memory.

» Coordinate the cores by having
them examine and update shared
memory locations.

= Distributed-memory

‘ Cache \ ‘ Cache | | Cache I | Cache |

» Each core has its own, private
memory. network

> The cores must communicate
explicitly by sending messages
across a network.

Type of parallel systems

Core 0 Core 0 Memory 0
Core 1 Core 1 Memory 1
= =
£ 2
= 2
Core p-1 Core p—1 Memory p—1

(@) (b)

Shared-memory Distributed-memory

Terminology

= Parallel computing — a single program in which
multiple tasks cooperate closely to solve a
problem

= Distributed computing — many programs
cooperate with each other to solve a problem.

Time for a Break?

Part 2

Parallel Hardware and Parallel
Software

Past: Serial hardware and software

programs

Computer runs one
program at a time.

CPU

ALU
Feqgisters

Control
Unit

The von Neumann Architecture

Arithmetic C

von Neumann bottleneck

MODIFICATIONS TO THE VON
NEUMANN MODEL

A programmer can write code to exploit.

PARALLEL HARDWARE

Flynn’s Taxonomy

A\

SISD
Single instruction stream
Single data stream

(SIMD)
Single instruction stream
Multiple data stream

MISD
Multiple instruction stream
Single data stream

(MIMD)
Multiple instruction stream
Multiple data stream

Flynn’s Parallel Architecture Taxonomy (1966)

= SISD: single instruction single data — traditional serial
processing!

= MISD: rare — multiple instructions on a single data item-
e.g., for fault tolerance!

= SIMD: single instruction on multiple datal!

o Some old architectures with a resurgence in
accelerators!

o Vector processors - pipelining!

= MIMD: multiple instructions multiple data - almost all

parallel computers !

s https://computing.linl.gov/tutorials/parallel comp/
#Terminology

Single Instruction, Single Data (SISD)

Multiple

Single
workers, all :
' ' dinat
s Aserial (non-parallel) doing same coordinator
thing

computer

= Single Instruction: Only one
Instruction stream is being
acted on by the CPU during
any one clock cycle

= Single Data: Only one data

Stream |S belng used as SISD Instruction Pool
iInput during any one clock
cycle

E | PU |+

@

A

SIMD (Single Instruction Multiple Data)

s Parallelism achieved by dividing data among the

processors.
Applies the same instruction to multiple data
items.
= Called data parallelism. SIMD | Instruction Pool
- +|PU [
2 »|PU [
3
S » PU | —
| PU

SIMD example

n data items
n ALUs

control unit

x|1] x|2]
ALU, ALU,

SIMD

= What if we don’t have as many ALUs as data
items?

= Divide the work and process iteratively.
= Ex. m=4ALUs and n =15 data items.

1 X[0] X[1] X[2] X[3]
2 X[4] X[5] X[6] X[7]
3 X[8] X[9] X[10] X[11]
4 X[12] X[13] X[14]

SIMD drawbacks

= All ALUs are required to execute the same
Instruction, or remain idle.

= |n classic design, they must also operate
synchronously.

= [he ALUs have no instruction storage.

= Efficient for large data parallel problems, but
not other types of more complex parallel
problems.

SIMD example: Vector processors

s Operate on arrays or vectors of data
= Advantages:

» Fast, Easy to use

» Good vectoring compilers

» High memory bandwidth.
s Disadvantages:

» don’t handle irregular data structures
» Scalability

Not pure SIMD: Graphics Processing Units (GPU)

= Real time graphics application programming
interfaces or API's use points, lines, and triangles to
internally represent the surface of an object.

(U

Graphics Processing Unit (GPU)

= A specialized electronic circuit with thousands of
cores that are specifically designed to perform
data-parallel computation

m |t process multiple elements in the graphics stream.

ALU ALU |

ALU ALU

CPU GPU
MULTIPLE CORES THOUSAMDS OF CORES

GPUs: how they work

» Can rapidly manipulate and alter memory to accelerate
the creation of images for output to a display

» Each pixel is processed by a short program before it was
projected onto the screen

Other Applications

> GPUs are used as vector
processors for non-graphics
applications that require
repetitive computations.

Multiple Instruction, Single Data (MISD):

= Multiple Instruction: Each processing unit operates on
the data independently via separate instruction streams.

= Single Data: A single data stream is fed into multiple
processing units.

s Few (if any) actual examples of this class of parallel
computer have ever existed.

MISD Instruction Pool

Data Pool
LY
(-
|
¥
—
(-
|

MIMD (multiple Instructions Multiple Data)

=| Multiple Instruction: Every processor
may be executing a different instruction

= Multiple Data: Every processor may be
working with a different data

> Typically consist of a collection of fully
Independent processing units or cores,

each of which has its own control unit Workers with same objective,
and |tS own ALU doing completely different things
. MIMD Instruction Pool
= MIMD Architecture types:
—[PU|— —|PU|+
» Shared memory _
S |—|PU[— —=|PU|—
> Distributed memory g
_ Al—|PUl— —[PU|~
» Hybrid!
—[PU|— = |PU|

Shared Memory System (1/2)

« Multiple processing units accessing global shared
memory using a single address space

Processors

Shared Memory

« Shared memory systems are easier to program

- User responsible for synchronization of processors for correct data
access and maodification

» Scaling to large number of processors can be an issue

Share Memory Access (2/2)

Two types of shared memory systems based on access type:

UMA: Uniform Memory Access — all
memory is “equidistant” from all processors

- Memory access can become a bottleneck

Shared Memory

NUMA: Non-Uniform Memory Access —
local memory versus distant memory

» Requires more complex interconnect hardware to
support global shared memory

« Also called Distributed shared memory systems

Distributed Memory System

« Multiple processing units with independent local
memory and address spaces

i o
: L'-cl_ = '.-'1'-'.2- P :
M M M M

Processors + Memory

« Systems are easier to scale

« No implicit sharing of data — user is responsible for explicit
communication of data amongst processors

Interconnection Networks

« Topologies:

Gt
2208 o0 SRS
o Ring SRS
Mesh Toroidal Mesh
>—0 I:i @ Fully Connected
1d 2d 3d 4d
Hypercube

« Network characteristics:
- Latency (/): time it takes for a link to transmit a unit of data (sec)
- Bandwidth (b): rate at which data is transmitted (bytes/sec)
- Message transmission time for n bytes = I+ n/b

- Bisection (band)width: a measure of network quality — number of links connecting two
halves of a network

PARALLEL SOFTWARE

The burden is on software

= |n shared memory programs:
» Start a single process and fork threads.
» Threads carry out tasks.
» Share a common memory space

= |n distributed memory programs:
» Start multiple processes.
» Processes carry out tasks.

» No shared memory space

=« Data is communicated between each other via
message passing

Approaches to Parallel Programming

= Shared memory programming: assumes a
global address space —data visible to all processes.

> Issue: synchronizing updates of shared data

» Software Tool: OpenMP

= Distributed memory programming: assumes
distributed address spaces — each process sees only
its local data.

> Issue: communication of data to other processes

» Software Tool : MPI (Message Passing Interface)

Writing Parallel Programs

1. Divide the work among the | double x|n], y[n];
processes/threads

(a) so each process/thread
gets roughly the same for (1=0;1<n;it++)

amount of work X[l] 4= [1]
(b) and communication is YU

minimized.
2. Arrange for the processes/threads to synchronize.
3. Arrange for communication among processes/threads.

Shared Memory: Nondeterminism

Private variable

printf ("Thread %d > my_véll = %d\n" ,

my_rank , my_x) ;

A

Thread 0 > my val =7
Thread 1 > my val =19

Thread 1 > my_val =19
Thread 0 > my val=7

Shared Memory: Nondeterminism

my_val = Compute_val (my_rank) ;

x += my_val ;

WRONG RESULT!

Time Core 0 Core 1
0 Finish assignment to my_val In call to Compute_val
1 Load x = 0 into register Finish assignment to my_val
2 Load my_val = 7 into register | Load x = 0 into register
3 Addmy_val = Ttox Load my_val = 19 into register
4 Storex = 7 Add my_val tox
5 Start other work Storex = 18

Shared Memory: Nondeterminism

s Race condition
s Critical section

= Mutually exclusive

= Mutual exclusion lock (mutex, or simply lock)

my_val = Compute_val (my_rank) ;
Lock(&add_my_val_lock) ;
X += my_val ;

Unlock(&add_my_val_lock) ;

Shared Memory: busy-waiting

my_val = Compute_val (my_rank) ;

1 f (my_rank == 1) /Shared variable
while (! ok _for_1); /* Busy—wait loop */

x += my_val ; /* Critical section */

if (my_rank == 0)
ok_for_1 = true; /* Let thread I update x */

Distributed Memory: message-passing

char message [1 00 | 5_

Local variable

my_rank = Get_rank () ;
if (my_rank ==1) {
sprintf (message , "Greetings from process 1") ;
Send (message , MSG_CHAR , 100,0) ;
telseif (my_rank ==0) {
Receive (message , MSG_CHAR ,100,1);

printf ("Process 0 > Received: %s\n" , message) ;

h

Input and Output

= |n distributed memory programs, only process 0
will access stdin.

= |n shared memory programs, only the master
thread or thread O will access stdin.

= |In both distributed memory and shared memory
programs all the processes/threads can access
stdout and stderr.

PERFORMANCE

Speedup

= Number of cores = p &

s Serial run-time =T

serial

» Parallel run-time =T,

P %) —
\\oeafwa\\)@(Tpara"el = Tserial / P
X\

\OF

Speedup of a parallel program

N

S N serial

T

parallel

> Speedup is at most p.

Efficiency of a parallel program

/ Tserial
S Tparallel Tserial

F =——= =
p p P. Tparallel

> Efficiency is at most 1.

Speedups and efficiencies of a
parallel program

| 2 4 & 16

p
S 0] 19 | 36 | 65 | 10.8
E—=S/p| 1.0 [0.95 [0.90 | 0.81 | 0.68

» Efficiency decreases as processors increase..

Speedups and efficiencies of
parallel program on different
problem sizes

1 2 4 8 16

1.9 | 3.1 | 48 | 6.2
0.95 | 0.78 | 0.60 | 0.39

19 | 36 | 65 | 108
0.95 | 0.90 | 0.81 | 0.68

19 | 39 | 75 | 142
0.95 | 0.98 | 0.94 | 0.89

Half

Double

p
)
E
Original | §
E
\)
E

OO OO O] D

]
}:
L.
l.
L.
L.

» For afixed p, Efficiency increases as the size of
the problem increases..

Speedup

—x— Hallf size
14 | | —+— Original A
—e— Double size

Processes

> Speedup increases as the size of the problem increases..

> Speedup increase decreases as processors increase..

Efficiency

© © © © o
o O N oo ©o©

Efficiency
o o
w
T
|

=

N
T

I

—x— Hallf size
—+— Original .
—e— Double size

0 2 4 6 8 10 12 14 16

Processes

» Efficiency decreases as the processors increase more
when the size of the problem decreases..

e
-—
T

Effect of overhead

Tparallel = Tserial / P + Toverhead

Amdahl’s Law

= Amdahl's Law shows a theoretical upper limit for speedup

In reality, the situation is even worse than predicted by
Amdahl’s Law due to:

» Load balancing (waiting)
» Scheduling (shared processors or memory)
» Communications

> /0 "

7 ﬁp =0.99 —
g 60 /

50
f A0 / = Amdahl's Law
e / — Reality
d 30 /
u 20 _p— e
¥ 10 /

/

0 T ——— 77— T
0 50 100 150

Example

= We can parallelize 90% of a serial program.

» Parallelization is “perfect” regardless of the
number of cores p we use.

s T, =20 seconds

= Runtime of parallelizable part is

09X T/ P=18/p

Example (cont.)

= Runtime of “unparallelizable™ part is

0.1xT =2

serial

s Overall parallel run-time is

Toaratie = 0-9 X Togi/ P+ 0.1 X Tgi =18/ p + 2

serial

Example (cont.)

m Speed up

Tserial 20
18/p + 2

S = 09X T/ P +0.1XTopry

serial

Scalability

= In general, a problem is scalable if it can handle
ever increasing problem sizes.

= |f we increase the number of processes/threads
and keep the efficiency fixed without increasing
problem size, the problem is strongly scalable.

n |f we keep the efficiency fixed by increasing the
problem size at the same rate as we increase
the number of processes/threads, the problem is
weakly scalable.

‘ Shared Memory: OpenMP

* OpenMP: a standard API to support shared memory parallel rogramming

- Managed by the OpenMP Architecture Review Board, OpenMP v1.0 was
released in 199/, latest v3.1 released July 2011

+ A directive-based approach to control:

- Parallel threads: Master thread creates parallel worker threads and the
work is divided amongst the workers

- Data sharing: assumed a global address space

« Major components:
- Parallel control structure
- Work sharing
- Data sharing and control
- Synchronization
- Other runtime functions

Parallel Task 2
Parallel Task 3

Parallel Task 1

Example: Sum of Squares

Forks off the threads and starts the
work-shanng construct; declares

thread id and loc_sum private

Each thread
retrnieves its own id’
Parallel for splits
loop range across
the threads.

Each thread

computes and prints
its id and local sum

; Threads cooperate to update
global variable one by one

Master thread
prints result

2112 Summer Short Cowrse for Earth Systern Modeling and Supercomputing

\5A Hioh End Comouting Capabilitv

OpenMP comments
v Plus:

= Very simple to use
= High level parallel directives
= Not getting in low-level (thread) programming

| Drawbacks

= You can not use more than one cores using
OpenMP
= (due to the shared memory between threads)

= To do so use need to use hybrid (openMP/MPI)
parallel programming

Distributed Memory: MPI

« MPI (Message Passing Interface): a standard
message passing library specification to support
process communication on a variety of systems
- MPI v1.0 (June 1994), latest MPI| v2.2 (Sept 2009)

« MPI assumes a distributed address space, i.e., each
process (rank) sees only local variables with explicit
constructs to communicate data to other processes

send > recv i send
recve— | . |y recv
recv T
send—|
| e e
broadcast —— | srecv T —arecv
’y 2 T3

MPI Features
« MPI-1

- General: Init/finalize, Communication group size/rank

- Point to Point communication:
« send, recv with multiple modes (blocking/non blocking, ...)

- Collective communication:

« Barrier for synchronization
- Broadcast

« Gather/scatter
« Reduction operations (built-in and user defined)

« MPI-2
- One-sided communication: Put, Get, Accumulate
- Extensions to collectives
- Dynamic process management

MPI code: sum of squares

Number of
processes

int num_tasks, my_rank, rc;

i retneves its rank’
int sum, loc_sum,N= _:

Each process computes
and prints its rank and
local sum

for(i = 0: i < N; i += numtasks) loc_sum = loc_sum + i * i;

printf(“\n Thread %i: %li\n", my_rank, Iuc_sl"“jﬁ% Each process sends J
local sum to rank 0
if (my_rank I= 0)

rc = MPI_Send(loc_sum, 1, MPT_INTEGER, O, my_rank, ...);
else {
sum = loc_sum
for (i = 1; i < num_tasks:; i++) {
rc = MPI_Recv(&loc_sum, 1, MPT_INTEGER, i, i, ..):
sum = sum + loc_sum
} Rank 0 receives

printf("\n Sum %i: %li\n", my_rank, loc_sum): fﬁfmﬁiﬁnﬂu{gf

]' and prints result

Each process J

MPI_Init();
MPI_Comm_size(MPI_COMM_WORLD, &num_tasks);
MPI_Comm_rank(MPL_COMM_WORLD, &my_rank);

MPI_Finalize():

Example: Pi Calculation with openMP

. 1 x=0;
Se”al: 2 sum = 0.68;

3 step = 1.0/(double) num_steps;

4 for (i=0; 1 < num steps; ++1) {

5 x = (1+8.5)*step;

6 sum = sum + 4.8/(1.0+x*x);
Parallel code: P

pl1 = step sum;

1 x=8;
2 sum = 8.0;
3 step = 1.8/(double) num_steps;
4 #pragma omp parallel private(i,x,aux) shared(sum)
5 {
6 #pragma omp ftor schedule(static)
7 for (1=0; i<num steps; i=1i+1){
8
9 x=(1+8.5)*step;
10 aux=4.8/(1.8+x*x);
11 #pragma omp critical
12 suUm = sum + aux;
13 1
14 }
15 pi=step®sum;

High Performance Computing at EUC

s Astrophysics and High Performance Computing
Research Group

» Applying HPC for developing efficient solutions

Currently:
= IN Astrophysics
> In Galaxies evolution
Future plans:
= in Health Sciences
« Medical imaging
= more

HST IMAGE OF 08572+3915

AHPC Research Group

s Head: Prof. Andreas Efstathiou
Members:
Ass. Prof. Vicky Papadopoulou

= Researchers:
> Natalie Christopher
» Andreas Papadopoulos

s Phd students

» Elena Stylianou

= Undergraduate Students:
» Michalis Kyprianou (Bachelor CS, EUC)

» Andreas Howes (Bachelor CS, EUC)

Parallel Processing in Python

In another Colloquium’s talk!

