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 Topic 1:
Why Parallel Computing?
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Why we need ever-increasing 
performance..



444

Climate modeling
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Protein folding
Misfolded proteins related to diseases like Parkinson, 
Alzheimer.
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Drug discovery
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Energy research
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Big Data processing!
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Past: Serial hardware and software

input

output

programs

Computer runs one
program at a time.
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Past : Computer architecture: The von Neumann 
Architecture
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Increasing single processor performance
 From 1986 – 2002, microprocessors were increasing 

in performance an average of 50% per year
 by increasing density of transistors.

 Since then, it’s dropped to 
about 20% increase per 
year..
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Increasing density of transistors

circuit board with a 4×4 array 
of SyNAPSE-developed chips, each 
chip using 5.4 billion transistors.
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Heating Problems..
 Smaller transistors = 

faster processors.
 Faster processors = 

increased power 
consumption.

 Increased power 
consumption = increased 
heat.

 Increased heat = 
unreliable processors.
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Solution 
 Use multicore processors (CPUs) on a single chip

 called cores 

 Introducing parallelism!!!

An Intel Core 2 Duo E6750 dual-core processor.
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Now it’s up to the programmers
 Adding more processors doesn’t help much if 

programmers aren’t aware of them…
 … or don’t know how to use them.
 Serial programs don’t benefit from this approach 

(in most cases).
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How to write parallel programs
 Running multiple instances of a serial program 

often isn’t very useful.

 Think of running multiple instances of your 
favorite game.

 What you really want is for
it to run faster.
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Approaches to the serial problem
 Rewrite serial programs so that they’re parallel.
 Write translation programs that automatically 

convert serial programs into parallel programs.
 This is very difficult to do.
 Success has been limited.
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Example
 Compute n values and add them together.
 Serial solution:
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Example (cont.)
 We have p cores, p much smaller than n.
 Each core performs a partial sum of 

approximately n/p values.

Each core uses it’s own private variables
and executes this block of code
independently of the other cores.
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Example (cont.)
 After each core completes execution of the code, 

a private variable my_sum contains the sum of 
the values computed by its calls to 
Compute_next_value.

 Ex., 8 cores, n = 24, then the calls to 
Compute_next_value return:

1,4,3,   9,2,8,    5,1,1,   5,2,7,   2,5,0,   4,1,8,   6,5,1,   2,3,9
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Example (cont.)
 Once all the cores are done computing their 

private my_sum, 
 they form a global sum by sending results to  

a designated “master” core 
 which adds the final result…
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Example (cont.)
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Example (cont.)
Core 0 1 2 3 4 5 6 7
my_sum 8 19 7 15 7 13 12 14

Global sum
8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95
Core 0 1 2 3 4 5 6 7
my_sum 95 19 7 15 7 13 12 14
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But wait!
There’s a much better way
to compute the global sum.
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Better parallel algorithm
 Don’t make the master core do all the work.
 Share it among the other cores.
 Pair the cores so that core 0 adds its result with 

core 1’s result.
 Core 2 adds its result with core 3’s result, etc.
 Work with odd and even numbered pairs of 

cores.



262626

Better parallel algorithm (cont.)
 Repeat the process now with only the evenly 

ranked cores.
 Core 0 adds result from core 2.
 Core 4 adds the result from core 6, etc.

 Now cores divisible by 4 repeat the process, and 
so forth, until core 0 has the final result.
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Multiple cores forming a global 
sum
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Analysis
 In the first example, the master core performs 7 

receives and 7 additions.

 In the second example, the master core performs 
3 receives and 3 additions.

 The improvement is more than a factor of 2!
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Analysis (cont.)
 The difference is more dramatic with a larger 

number of cores.
 If we have 1000 cores:

 The first example would require the master to 
perform 999 receives and 999 additions.

 The second example would only require 10
receives and 10 additions.

 That’s an improvement of almost a factor of 100!
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How do we write parallel programs?
 Task parallelism 

 Partition various 
tasks carried out 
solving the 
problem among 
the cores.

 Data parallelism
 Partition the data used 

in solving the problem 
among the cores.

 Each core carries out 
similar operations on 
it’s part of the data.
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Data Parallelism
 Definition: each process does the same work on unique

and independent pieces of data 
 Examples: 

 8 farmers mow                                          
a lawn

 2 farmers paint
a storage area

 Usually more scalable than functional parallelism 
 Can be programmed at a high level with OpenMP
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 Definition:   each processor executes a different process/
thread (same or different code) on the same or different data. 

 Usually each processor executes a different process or an 
independent program

 Processes communicate with one another as they work by 
passing data from one process/thread to the next

 More suitable for distributed computation
 Examples: 

 Independent Monte Carlo Simulations 
 ATM Transactions

Task Parallelism 
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 Example follows..
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Professor P

15 questions
300 exams
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Professor P’s grading assistants

TA#1 TA#2 TA#3
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Division of work –
data parallelism

TA#1

TA#2

TA#3
100 exams

100 exams

100 exams
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Division of work –
task parallelism

TA#1

TA#2

TA#3
Questions 1 - 5

Questions 6 - 10

Questions 11 - 15
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Division of work –data parallelism
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Division of work –task parallelism

Tasks
1) Receiving
2) Addition 
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Terminology (1/3)
 Serial code is a single thread of execution working on a single 

data item at any one time 
 Parallel code has more than one thing happening at a time. 

This could be 
 Multiple threads of execution in a single executable on 

different data 
 Multiple executables (processes) all working on the same 

problem (in on or more programs)
 Any combination of the above 

 Task is a program or a function.
 Each task has its own virtual address space and may have multiple 

threads 
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Terminology (2/3)
 Traditional CPU:  a single central processing unit (CPU) on 

a chip. 
 Multi-core processor/ socket : A single chip containing two

or more CPUs called "cores
 A node may have multiple cores…
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Terminology (3/3)
 Node: a actual physical self contained computer unit that 

has its own processors, memory, I/O bus and storage.
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Coordination
 Cores usually need to coordinate their work.
 Communication – one or more cores send their 

current partial sums to another core.
 Load balancing – share the work evenly among 

the cores so that one is not heavily loaded.
 Synchronization – because each core works at its 

own pace, make sure cores do not get too far 
ahead of the rest.
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Type of parallel systems
 Shared-memory

 The cores can share access to 
the computer’s memory.

 Coordinate the cores by having 
them examine and update shared
memory locations.

 Distributed-memory
 Each core has its own, private 

memory.
 The cores must communicate

explicitly by sending messages 
across a network.
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Type of parallel systems

Shared-memory Distributed-memory
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Terminology 
 Parallel computing – a single program in which  

multiple tasks cooperate closely to solve a 
problem

 Distributed computing – many programs 
cooperate with each other to solve a problem.
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Time for a Break? 

Or for some comments/ discussion up to now?!…
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Part 2
Parallel Hardware and Parallel 
Software
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Past: Serial hardware and software

input

output

programs

Computer runs one
program at a time.
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The von Neumann Architecture
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von Neumann bottleneck
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MODIFICATIONS TO THE VON 
NEUMANN MODEL
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PARALLEL HARDWARE
A programmer can write code to exploit.
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Flynn’s Taxonomy
SISD

Single instruction stream
Single data stream

(SIMD)
Single instruction stream

Multiple data stream

MISD
Multiple instruction stream

Single data stream

(MIMD)
Multiple instruction stream

Multiple data stream
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Flynnʼs Parallel Architecture Taxonomy (1966)
 SISD: single instruction single data – traditional serial 

processing!
 MISD: rare – multiple instructions on a single data item-

e.g., for fault tolerance!
 SIMD: single instruction on multiple data!

 Some old architectures with a resurgence in 
accelerators!

 Vector processors - pipelining!
 MIMD: multiple instructions multiple data - almost all 

parallel computers !
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 https://computing.llnl.gov/tutorials/parallel_comp/
#Terminology
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Single Instruction, Single Data (SISD)
 A serial (non-parallel) 

computer
 Single Instruction: Only one 

instruction stream is being 
acted on by the CPU during 
any one clock cycle

 Single Data: Only one data 
stream is being used as 
input during any one clock 
cycle
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SIMD (Single Instruction Multiple Data)
 Parallelism achieved by dividing data among the 

processors.
Applies the same instruction to multiple data
items.

 Called data parallelism.
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SIMD example
control unit

ALU1 ALU2 ALUn

…

for (i = 0; i < n; i++)
x[i] += y[i];

x[1] x[2] x[n]

n data items
n ALUs
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SIMD
 What if we don’t have as many ALUs as data 

items? 
 Divide the work and process iteratively.
 Ex. m = 4 ALUs   and   n = 15 data items.

Round3 ALU1 ALU2 ALU3 ALU4
1 X[0] X[1] X[2] X[3]
2 X[4] X[5] X[6] X[7]
3 X[8] X[9] X[10] X[11]
4 X[12] X[13] X[14]
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SIMD drawbacks
 All ALUs are required to execute the same 

instruction, or remain idle.
 In classic design, they must also operate 

synchronously.
 The ALUs have no instruction storage.

 Efficient for large data parallel problems, but 
not other types of more complex parallel 

problems.
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SIMD example: Vector processors
 Operate on arrays or vectors of data
 Advantages:

 Fast, Easy to use
 Good vectoring compilers
 High memory bandwidth.

 Disadvantages:
 don’t handle irregular data structures
 Scalability
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Not pure SIMD: Graphics Processing Units (GPU)
 Real time graphics application programming 

interfaces or API’s use points, lines, and triangles to 
internally represent the surface of an object.
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Graphics Processing Unit (GPU)
 A specialized electronic circuit with thousands of 

cores that are specifically designed to perform 
data-parallel computation

 It process multiple elements in the graphics stream. 
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GPUs: how they work
 Can rapidly manipulate and alter memory to accelerate 

the creation of images for output to a display
 Each pixel is processed by a short program before it was 

projected onto the screen

Other Applications
 GPUs are used as vector 

processors for non-graphics 
applications that require 
repetitive computations.
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Multiple Instruction, Single Data (MISD):
 Multiple Instruction: Each processing unit operates on 

the data independently via separate instruction streams.
 Single Data: A single data stream is fed into multiple 

processing units.
 Few (if any) actual examples of this class of parallel 

computer have ever existed.
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MIMD (multiple Instructions Multiple Data)
 Multiple Instruction: Every processor 

may be executing a different instruction
 Multiple Data: Every processor may be 

working with a different data
 Typically consist of a collection of fully 

independent processing units or cores, 
each of which has its own control unit 
and its own ALU.

 MIMD Architecture types:
 Shared memory
 Distributed memory
 Hybrid! Cray XT3
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Shared Memory System (1/2)
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Share Memory Access  (2/2)
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Distributed Memory System
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Interconnection Networks
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PARALLEL SOFTWARE
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The burden is on software
 In shared memory programs:

 Start a single process and fork threads.
 Threads carry out tasks.
 Share a common memory space

 In distributed memory programs:
 Start multiple processes.
 Processes carry out tasks.
 No shared memory space

 Data is communicated between each other via 
message passing
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Approaches to Parallel Programming
 Shared memory programming: assumes a        

global address space –data visible to all processes.
 Issue: synchronizing updates of shared data
 Software Tool: OpenMP

 Distributed memory programming: assumes 
distributed address spaces – each process sees only 
its local data.
 Issue: communication of data to other processes
 Software Tool : MPI (Message Passing Interface)
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Writing Parallel Programs
double x[n], y[n];
…
for (i = 0; i < n; i++)

x[i] += y[i];

1. Divide the work among the
processes/threads

(a) so each process/thread
gets roughly the same 
amount of work

(b) and communication is
minimized.

2. Arrange for the processes/threads to synchronize.
3. Arrange for communication among processes/threads.
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Shared Memory: Nondeterminism
. . .
printf  ( "Thread %d > my_val = %d\n" , my_rank , my_x ) ;
. . .

Thread 0 > my_val = 7
Thread 1 > my_val = 19Thread 1 > my_val = 19

Thread 0 > my_val = 7

Private variable
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Shared Memory: Nondeterminism
my_val = Compute_val ( my_rank ) ;
x += my_val ;
WRONG RESULT!
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 Race condition
 Critical section
 Mutually exclusive
 Mutual exclusion lock (mutex, or simply lock)

my_val = Compute_val ( my_rank ) ;
Lock(&add_my_val_lock ) ;
x += my_val ;
Unlock(&add_my_val_lock ) ;

Shared Memory: Nondeterminism
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Shared Memory: busy-waiting
my_val = Compute_val ( my_rank ) ;
i f  ( my_rank == 1)

whi l e ( ! ok_for_1 ) ;  /* Busy−wait loop */
x += my_val ;  /* Critical section */
i f  ( my_rank == 0)

ok_for_1 = true ;  /* Let thread 1 update x */

Shared variable
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Distributed Memory: message-passing
char message [ 1 0 0 ] ;
. . .
my_rank = Get_rank ( ) ;
i f  ( my_rank == 1) {

sprintf  ( message , "Greetings from process 1" ) ;
Send ( message , MSG_CHAR , 100 , 0 ) ;

} e l s e i f  ( my_rank == 0) {
Receive ( message , MSG_CHAR , 100 , 1 ) ;
printf  ( "Process 0 > Received: %s\n" , message ) ;

}

Local variable
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Input and Output
 In distributed memory programs, only process 0 

will access stdin. 
 In shared memory programs, only the master 

thread or thread 0 will access stdin.
 In both distributed memory and shared memory 

programs all the processes/threads can access 
stdout and stderr.
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PERFORMANCE
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Speedup 
 Number of cores = p
 Serial run-time = Tserial
 Parallel run-time = Tparallel

Tparallel = Tserial / p
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Speedup of a parallel program
Tserial 
Tparallel

S = 

 Speedup is at most p.
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Efficiency of a parallel program

E = 
Tserial 
TparallelS p = p = Tserial 

p  Tparallel.
 Efficiency is at most 1.
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Speedups and efficiencies of a 
parallel program

 Efficiency decreases as processors increase..
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Speedups and efficiencies of 
parallel program on different 
problem sizes

 For a fixed p, Efficiency increases as the size of 
the problem increases..
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Speedup

 Speedup increase decreases as processors increase..
 Speedup increases as the size of the problem increases..
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Efficiency

 Efficiency decreases as the processors increase more 
when the size of the problem decreases..
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Effect of overhead

Tparallel = Tserial / p + Toverhead
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Amdahl’s Law
 Amdahl’s Law shows a theoretical upper limit for speedup 

In reality, the situation is even worse than predicted by 
Amdahl’s Law due to: 
 Load balancing (waiting) 
 Scheduling (shared processors or memory) 
 Communications 
 I/O 
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Example
 We can parallelize 90% of a serial program.
 Parallelization is “perfect” regardless of the 

number of cores p we use.
 Tserial = 20 seconds
 Runtime  of parallelizable part is  

0.9 x Tserial / p = 18 / p



939393

Example (cont.)
 Runtime  of “unparallelizable” part is  

 Overall parallel run-time is
0.1 x Tserial  = 2

Tparallel = 0.9 x Tserial / p + 0.1 x Tserial = 18 / p + 2
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Example (cont.)
 Speed up

0.9 x Tserial / p + 0.1 x Tserial

TserialS = = 18 / p + 2
20
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Scalability
 In general, a problem is scalable if it can handle 

ever increasing problem sizes.
 If we increase the number of processes/threads 

and keep the efficiency fixed without increasing 
problem size, the problem is strongly scalable.

 If we keep the efficiency fixed by increasing the 
problem size at the same rate as we increase 
the number of processes/threads, the problem is 
weakly scalable.
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Shared Memory: OpenMP
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Example: Sum of Squares



989898

OpenMP comments
√ Plus:
 Very simple to use
 High level parallel directives
 Not getting in low-level (thread) programming

↓ Drawbacks
 You can not use more than one cores using 

OpenMP
 (due to the shared memory between threads)
 To do so use need to use hybrid (openMP/MPI) 

parallel programming
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Distributed Memory: MPI

EUC Colloquium on Mathematics, Computer Science and Engineering - February 3rd 2016 
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MPI Features
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MPI code: sum of squares
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Example: Pi Calculation with openMP
Serial:

Parallel code:
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High Performance Computing  at EUC
 Astrophysics and High Performance Computing 

Research Group (http://ahpc.euc.ac.cy)
 Applying HPC for developing efficient solutions
Currently:

 in Astrophysics
 In Galaxies evolution

Future plans:
 in Health Sciences
 Medical imaging
 more

HST IMAGE OF 08572+3915
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AHPC Research Group
 Head: Prof. Andreas Efstathiou
Members: 

Ass. Prof. Vicky Papadopoulou
 Researchers:

 Natalie Christopher
 Andreas Papadopoulos

 Phd students
 Elena Stylianou

 Undergraduate Students:
 Michalis Kyprianou (Bachelor CS, EUC)
 Andreas Howes (Bachelor CS, EUC)
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Parallel Processing in Python
In another Colloquium’s talk!


