
1

Peter Pacheco

The presentation is based on material of the book:

An Introduction to Parallel Computing/ Programming

An Introduction to Parallel Programming

Vicky Papadopoulou Lesta
Astrophysics and High Performance Computing Research Group

(http://ahpc.euc.ac.cy)
Dep. of Computer Science and Engineering

European University

222

 Topic 1:
Why Parallel Computing?

333

Why we need ever-increasing
performance..

444

Climate modeling

555

Protein folding
Misfolded proteins related to diseases like Parkinson,
Alzheimer.

666

Drug discovery

777

Energy research

888

Big Data processing!

999

Past: Serial hardware and software

input

output

programs

Computer runs one
program at a time.

101010

Past : Computer architecture: The von Neumann
Architecture

111111

Increasing single processor performance
 From 1986 – 2002, microprocessors were increasing

in performance an average of 50% per year
 by increasing density of transistors.

 Since then, it’s dropped to
about 20% increase per
year..

121212

Increasing density of transistors

circuit board with a 4×4 array
of SyNAPSE-developed chips, each
chip using 5.4 billion transistors.

131313

Heating Problems..
 Smaller transistors =

faster processors.
 Faster processors =

increased power
consumption.

 Increased power
consumption = increased
heat.

 Increased heat =
unreliable processors.

141414

Solution
 Use multicore processors (CPUs) on a single chip

 called cores

 Introducing parallelism!!!

An Intel Core 2 Duo E6750 dual-core processor.

151515

Now it’s up to the programmers
 Adding more processors doesn’t help much if

programmers aren’t aware of them…
 … or don’t know how to use them.
 Serial programs don’t benefit from this approach

(in most cases).

161616

How to write parallel programs
 Running multiple instances of a serial program

often isn’t very useful.

 Think of running multiple instances of your
favorite game.

 What you really want is for
it to run faster.

171717

Approaches to the serial problem
 Rewrite serial programs so that they’re parallel.
 Write translation programs that automatically

convert serial programs into parallel programs.
 This is very difficult to do.
 Success has been limited.

181818

Example
 Compute n values and add them together.
 Serial solution:

191919

Example (cont.)
 We have p cores, p much smaller than n.
 Each core performs a partial sum of

approximately n/p values.

Each core uses it’s own private variables
and executes this block of code
independently of the other cores.

202020

Example (cont.)
 After each core completes execution of the code,

a private variable my_sum contains the sum of
the values computed by its calls to
Compute_next_value.

 Ex., 8 cores, n = 24, then the calls to
Compute_next_value return:

1,4,3, 9,2,8, 5,1,1, 5,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9

212121

Example (cont.)
 Once all the cores are done computing their

private my_sum,
 they form a global sum by sending results to

a designated “master” core
 which adds the final result…

222222

Example (cont.)

232323

Example (cont.)
Core 0 1 2 3 4 5 6 7
my_sum 8 19 7 15 7 13 12 14

Global sum
8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95
Core 0 1 2 3 4 5 6 7
my_sum 95 19 7 15 7 13 12 14

242424

But wait!
There’s a much better way
to compute the global sum.

252525

Better parallel algorithm
 Don’t make the master core do all the work.
 Share it among the other cores.
 Pair the cores so that core 0 adds its result with

core 1’s result.
 Core 2 adds its result with core 3’s result, etc.
 Work with odd and even numbered pairs of

cores.

262626

Better parallel algorithm (cont.)
 Repeat the process now with only the evenly

ranked cores.
 Core 0 adds result from core 2.
 Core 4 adds the result from core 6, etc.

 Now cores divisible by 4 repeat the process, and
so forth, until core 0 has the final result.

272727

Multiple cores forming a global
sum

282828

Analysis
 In the first example, the master core performs 7

receives and 7 additions.

 In the second example, the master core performs
3 receives and 3 additions.

 The improvement is more than a factor of 2!

292929

Analysis (cont.)
 The difference is more dramatic with a larger

number of cores.
 If we have 1000 cores:

 The first example would require the master to
perform 999 receives and 999 additions.

 The second example would only require 10
receives and 10 additions.

 That’s an improvement of almost a factor of 100!

303030

How do we write parallel programs?
 Task parallelism

 Partition various
tasks carried out
solving the
problem among
the cores.

 Data parallelism
 Partition the data used

in solving the problem
among the cores.

 Each core carries out
similar operations on
it’s part of the data.

313131

Data Parallelism
 Definition: each process does the same work on unique

and independent pieces of data
 Examples:

 8 farmers mow
a lawn

 2 farmers paint
a storage area

 Usually more scalable than functional parallelism
 Can be programmed at a high level with OpenMP

323232

 Definition: each processor executes a different process/
thread (same or different code) on the same or different data.

 Usually each processor executes a different process or an
independent program

 Processes communicate with one another as they work by
passing data from one process/thread to the next

 More suitable for distributed computation
 Examples:

 Independent Monte Carlo Simulations
 ATM Transactions

Task Parallelism

333333

 Example follows..

343434

Professor P

15 questions
300 exams

353535

Professor P’s grading assistants

TA#1 TA#2 TA#3

363636

Division of work –
data parallelism

TA#1

TA#2

TA#3
100 exams

100 exams

100 exams

373737

Division of work –
task parallelism

TA#1

TA#2

TA#3
Questions 1 - 5

Questions 6 - 10

Questions 11 - 15

383838

Division of work –data parallelism

393939

Division of work –task parallelism

Tasks
1) Receiving
2) Addition

404040

Terminology (1/3)
 Serial code is a single thread of execution working on a single

data item at any one time
 Parallel code has more than one thing happening at a time.

This could be
 Multiple threads of execution in a single executable on

different data
 Multiple executables (processes) all working on the same

problem (in on or more programs)
 Any combination of the above

 Task is a program or a function.
 Each task has its own virtual address space and may have multiple

threads

414141

Terminology (2/3)
 Traditional CPU: a single central processing unit (CPU) on

a chip.
 Multi-core processor/ socket : A single chip containing two

or more CPUs called "cores
 A node may have multiple cores…

424242

Terminology (3/3)
 Node: a actual physical self contained computer unit that

has its own processors, memory, I/O bus and storage.

434343

Coordination
 Cores usually need to coordinate their work.
 Communication – one or more cores send their

current partial sums to another core.
 Load balancing – share the work evenly among

the cores so that one is not heavily loaded.
 Synchronization – because each core works at its

own pace, make sure cores do not get too far
ahead of the rest.

444444

Type of parallel systems
 Shared-memory

 The cores can share access to
the computer’s memory.

 Coordinate the cores by having
them examine and update shared
memory locations.

 Distributed-memory
 Each core has its own, private

memory.
 The cores must communicate

explicitly by sending messages
across a network.

454545

Type of parallel systems

Shared-memory Distributed-memory

464646

Terminology
 Parallel computing – a single program in which

multiple tasks cooperate closely to solve a
problem

 Distributed computing – many programs
cooperate with each other to solve a problem.

474747

Time for a Break?

Or for some comments/ discussion up to now?!…

484848

Part 2
Parallel Hardware and Parallel
Software

494949

Past: Serial hardware and software

input

output

programs

Computer runs one
program at a time.

505050

The von Neumann Architecture

515151

von Neumann bottleneck

525252

MODIFICATIONS TO THE VON
NEUMANN MODEL

535353

PARALLEL HARDWARE
A programmer can write code to exploit.

545454

Flynn’s Taxonomy
SISD

Single instruction stream
Single data stream

(SIMD)
Single instruction stream

Multiple data stream

MISD
Multiple instruction stream

Single data stream

(MIMD)
Multiple instruction stream

Multiple data stream

555555

Flynnʼs Parallel Architecture Taxonomy (1966)
 SISD: single instruction single data – traditional serial

processing!
 MISD: rare – multiple instructions on a single data item-

e.g., for fault tolerance!
 SIMD: single instruction on multiple data!

 Some old architectures with a resurgence in
accelerators!

 Vector processors - pipelining!
 MIMD: multiple instructions multiple data - almost all

parallel computers !

565656

 https://computing.llnl.gov/tutorials/parallel_comp/
#Terminology

575757

Single Instruction, Single Data (SISD)
 A serial (non-parallel)

computer
 Single Instruction: Only one

instruction stream is being
acted on by the CPU during
any one clock cycle

 Single Data: Only one data
stream is being used as
input during any one clock
cycle

585858

SIMD (Single Instruction Multiple Data)
 Parallelism achieved by dividing data among the

processors.
Applies the same instruction to multiple data
items.

 Called data parallelism.

595959

SIMD example
control unit

ALU1 ALU2 ALUn

…

for (i = 0; i < n; i++)
x[i] += y[i];

x[1] x[2] x[n]

n data items
n ALUs

606060

SIMD
 What if we don’t have as many ALUs as data

items?
 Divide the work and process iteratively.
 Ex. m = 4 ALUs and n = 15 data items.

Round3 ALU1 ALU2 ALU3 ALU4
1 X[0] X[1] X[2] X[3]
2 X[4] X[5] X[6] X[7]
3 X[8] X[9] X[10] X[11]
4 X[12] X[13] X[14]

616161

SIMD drawbacks
 All ALUs are required to execute the same

instruction, or remain idle.
 In classic design, they must also operate

synchronously.
 The ALUs have no instruction storage.

 Efficient for large data parallel problems, but
not other types of more complex parallel

problems.

626262

SIMD example: Vector processors
 Operate on arrays or vectors of data
 Advantages:

 Fast, Easy to use
 Good vectoring compilers
 High memory bandwidth.

 Disadvantages:
 don’t handle irregular data structures
 Scalability

636363

Not pure SIMD: Graphics Processing Units (GPU)
 Real time graphics application programming

interfaces or API’s use points, lines, and triangles to
internally represent the surface of an object.

646464

Graphics Processing Unit (GPU)
 A specialized electronic circuit with thousands of

cores that are specifically designed to perform
data-parallel computation

 It process multiple elements in the graphics stream.

656565

GPUs: how they work
 Can rapidly manipulate and alter memory to accelerate

the creation of images for output to a display
 Each pixel is processed by a short program before it was

projected onto the screen

Other Applications
 GPUs are used as vector

processors for non-graphics
applications that require
repetitive computations.

666666

Multiple Instruction, Single Data (MISD):
 Multiple Instruction: Each processing unit operates on

the data independently via separate instruction streams.
 Single Data: A single data stream is fed into multiple

processing units.
 Few (if any) actual examples of this class of parallel

computer have ever existed.

676767

MIMD (multiple Instructions Multiple Data)
 Multiple Instruction: Every processor

may be executing a different instruction
 Multiple Data: Every processor may be

working with a different data
 Typically consist of a collection of fully

independent processing units or cores,
each of which has its own control unit
and its own ALU.

 MIMD Architecture types:
 Shared memory
 Distributed memory
 Hybrid! Cray XT3

686868

Shared Memory System (1/2)

696969

Share Memory Access (2/2)

707070

Distributed Memory System

717171

Interconnection Networks

727272

PARALLEL SOFTWARE

737373

The burden is on software
 In shared memory programs:

 Start a single process and fork threads.
 Threads carry out tasks.
 Share a common memory space

 In distributed memory programs:
 Start multiple processes.
 Processes carry out tasks.
 No shared memory space

 Data is communicated between each other via
message passing

747474

Approaches to Parallel Programming
 Shared memory programming: assumes a

global address space –data visible to all processes.
 Issue: synchronizing updates of shared data
 Software Tool: OpenMP

 Distributed memory programming: assumes
distributed address spaces – each process sees only
its local data.
 Issue: communication of data to other processes
 Software Tool : MPI (Message Passing Interface)

757575

Writing Parallel Programs
double x[n], y[n];
…
for (i = 0; i < n; i++)

x[i] += y[i];

1. Divide the work among the
processes/threads

(a) so each process/thread
gets roughly the same
amount of work

(b) and communication is
minimized.

2. Arrange for the processes/threads to synchronize.
3. Arrange for communication among processes/threads.

767676

Shared Memory: Nondeterminism
. . .
printf ("Thread %d > my_val = %d\n" , my_rank , my_x) ;
. . .

Thread 0 > my_val = 7
Thread 1 > my_val = 19Thread 1 > my_val = 19

Thread 0 > my_val = 7

Private variable

777777

Shared Memory: Nondeterminism
my_val = Compute_val (my_rank) ;
x += my_val ;
WRONG RESULT!

787878

 Race condition
 Critical section
 Mutually exclusive
 Mutual exclusion lock (mutex, or simply lock)

my_val = Compute_val (my_rank) ;
Lock(&add_my_val_lock) ;
x += my_val ;
Unlock(&add_my_val_lock) ;

Shared Memory: Nondeterminism

797979

Shared Memory: busy-waiting
my_val = Compute_val (my_rank) ;
i f (my_rank == 1)

whi l e (! ok_for_1) ; /* Busy−wait loop */
x += my_val ; /* Critical section */
i f (my_rank == 0)

ok_for_1 = true ; /* Let thread 1 update x */

Shared variable

808080

Distributed Memory: message-passing
char message [1 0 0] ;
. . .
my_rank = Get_rank () ;
i f (my_rank == 1) {

sprintf (message , "Greetings from process 1") ;
Send (message , MSG_CHAR , 100 , 0) ;

} e l s e i f (my_rank == 0) {
Receive (message , MSG_CHAR , 100 , 1) ;
printf ("Process 0 > Received: %s\n" , message) ;

}

Local variable

818181

Input and Output
 In distributed memory programs, only process 0

will access stdin.
 In shared memory programs, only the master

thread or thread 0 will access stdin.
 In both distributed memory and shared memory

programs all the processes/threads can access
stdout and stderr.

828282

PERFORMANCE

838383

Speedup
 Number of cores = p
 Serial run-time = Tserial
 Parallel run-time = Tparallel

Tparallel = Tserial / p

848484

Speedup of a parallel program
Tserial
Tparallel

S =

 Speedup is at most p.

858585

Efficiency of a parallel program

E =
Tserial
TparallelS p = p = Tserial

p Tparallel.
 Efficiency is at most 1.

868686

Speedups and efficiencies of a
parallel program

 Efficiency decreases as processors increase..

878787

Speedups and efficiencies of
parallel program on different
problem sizes

 For a fixed p, Efficiency increases as the size of
the problem increases..

888888

Speedup

 Speedup increase decreases as processors increase..
 Speedup increases as the size of the problem increases..

898989

Efficiency

 Efficiency decreases as the processors increase more
when the size of the problem decreases..

909090

Effect of overhead

Tparallel = Tserial / p + Toverhead

919191

Amdahl’s Law
 Amdahl’s Law shows a theoretical upper limit for speedup

In reality, the situation is even worse than predicted by
Amdahl’s Law due to:
 Load balancing (waiting)
 Scheduling (shared processors or memory)
 Communications
 I/O

929292

Example
 We can parallelize 90% of a serial program.
 Parallelization is “perfect” regardless of the

number of cores p we use.
 Tserial = 20 seconds
 Runtime of parallelizable part is

0.9 x Tserial / p = 18 / p

939393

Example (cont.)
 Runtime of “unparallelizable” part is

 Overall parallel run-time is
0.1 x Tserial = 2

Tparallel = 0.9 x Tserial / p + 0.1 x Tserial = 18 / p + 2

949494

Example (cont.)
 Speed up

0.9 x Tserial / p + 0.1 x Tserial

TserialS = = 18 / p + 2
20

959595

Scalability
 In general, a problem is scalable if it can handle

ever increasing problem sizes.
 If we increase the number of processes/threads

and keep the efficiency fixed without increasing
problem size, the problem is strongly scalable.

 If we keep the efficiency fixed by increasing the
problem size at the same rate as we increase
the number of processes/threads, the problem is
weakly scalable.

969696

Shared Memory: OpenMP

979797

Example: Sum of Squares

989898

OpenMP comments
√ Plus:
 Very simple to use
 High level parallel directives
 Not getting in low-level (thread) programming

↓ Drawbacks
 You can not use more than one cores using

OpenMP
 (due to the shared memory between threads)
 To do so use need to use hybrid (openMP/MPI)

parallel programming

999999

Distributed Memory: MPI

EUC Colloquium on Mathematics, Computer Science and Engineering - February 3rd 2016

100100100

MPI Features

101101101

MPI code: sum of squares

102102102

Example: Pi Calculation with openMP
Serial:

Parallel code:

103103103

High Performance Computing at EUC
 Astrophysics and High Performance Computing

Research Group (http://ahpc.euc.ac.cy)
 Applying HPC for developing efficient solutions
Currently:

 in Astrophysics
 In Galaxies evolution

Future plans:
 in Health Sciences
 Medical imaging
 more

HST IMAGE OF 08572+3915

104104104

AHPC Research Group
 Head: Prof. Andreas Efstathiou
Members:

Ass. Prof. Vicky Papadopoulou
 Researchers:

 Natalie Christopher
 Andreas Papadopoulos

 Phd students
 Elena Stylianou

 Undergraduate Students:
 Michalis Kyprianou (Bachelor CS, EUC)
 Andreas Howes (Bachelor CS, EUC)

105105105

Parallel Processing in Python
In another Colloquium’s talk!

