An Introduction to Parallel Computing/ Programming

Vicky Papadopoulou Lesta

Astrophysics and High Performance Computing Research Group (http://ahpc.euc.ac.cy)

Dep. of Computer Science and Engineering European University

The presentation is based on material of the book:

An Introduction to Parallel Programming

Peter Pacheco

Topic 1:
Why Parallel Computing?

Why we need ever-increasing performance..

Climate modeling

Protein folding

Misfolded proteins related to diseases like Parkinson, Alzheimer.

Drug discovery

Energy research

Big Data processing!

Past: Serial hardware and software

Computer runs one program at a time.

Past: Computer architecture: The von Neumann

Architecture

Increasing single processor performance

■ From 1986 – 2002, microprocessors were increasing in performance an average of 50% per year →

> by increasing density of transistors.

 Since then, it's dropped to about 20% increase per year..

Increasing density of transistors

circuit board with a 4×4 array of SyNAPSE-developed chips, each chip using 5.4 billion transistors.

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Heating Problems..

- Smaller transistors = faster processors.
- Faster processors = increased power consumption.
- Increased power consumption = increased heat.
- Increased heat = unreliable processors.

Solution

- ⇒ Use multicore processors (CPUs) on a single chip
 - called cores

An Intel Core 2 Duo E6750 dual-core processor.

Introducing parallelism!!!

Now it's up to the programmers

- Adding more processors doesn't help much if programmers aren't aware of them...
- or don't know how to use them.
- Serial programs don't benefit from this approach (in most cases).

How to write parallel programs

 Running multiple instances of a serial program often isn't very useful.

 Think of running multiple instances of your favorite game.

What you really want is for it to run faster.

Approaches to the serial problem

- Rewrite serial programs so that they're parallel.
- Write translation programs that automatically convert serial programs into parallel programs.
 - > This is very difficult to do.
 - Success has been limited.

Example

- Compute n values and add them together.
- Serial solution:

```
sum = 0;
for (i = 0; i < n; i++) {
    x = Compute_next_value(. . .);
    sum += x;
}</pre>
```

- We have p cores, p much smaller than n.
- Each core performs a partial sum of approximately n/p values.

```
my_sum = 0;
my_first_i = . . . ;
my_last_i = . . . ;
for (my_i = my_first_i; my_i < my_last_i; my_i++) {
    my_x = Compute_next_value( . . .);
    my_sum += my_x;
}</pre>
```

Each core uses it's own private variables and executes this block of code independently of the other cores.

 After each core completes execution of the code, a private variable my_sum contains the sum of the values computed by its calls to Compute_next_value.

Ex., 8 cores, n = 24, then the calls to Compute_next_value return:

1,4,3, 9,2,8, 5,1,1, 5,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9

- Once all the cores are done computing their private my_sum,
 - they form a global sum by sending results to a designated "master" core
 - > which adds the final result...

```
if (I'm the master core) {
    sum = my_x;
    for each core other than myself {
        receive value from core;
        sum += value;
    }
} else {
    send my_x to the master;
}
```

Core	0	1	2	3	4	5	6	7
my_sum	8	19	7	15	7	13	12	14

Global sum

$$8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95$$

Core	0	1	2	3	4	5	6	7
my_sum	95	19	7	15	7	13	12	14

But wait!

There's a much better way to compute the global sum.

Better parallel algorithm

- Don't make the master core do all the work.
- Share it among the other cores.
- Pair the cores so that core 0 adds its result with core 1's result.
- Core 2 adds its result with core 3's result, etc.
- Work with odd and even numbered pairs of cores.

Better parallel algorithm (cont.)

- Repeat the process now with only the evenly ranked cores.
 - > Core 0 adds result from core 2.
 - > Core 4 adds the result from core 6, etc.
- Now cores divisible by 4 repeat the process, and so forth, until core 0 has the final result.

Multiple cores forming a global sum

Analysis

 In the first example, the master core performs 7 receives and 7 additions.

 In the second example, the master core performs 3 receives and 3 additions.

The improvement is more than a factor of 2!

Analysis (cont.)

- The difference is more dramatic with a larger number of cores.
- If we have 1000 cores:
 - > The first example would require the master to perform 999 receives and 999 additions.
 - The second example would only require 10 receives and 10 additions.
- That's an improvement of almost a factor of 100!

How do we write parallel programs?

- Data parallelism
 - Partition the data used in solving the problem among the cores.
 - Each core carries out similar operations on it's part of the data.

- Task parallelism
 - Partition various tasks carried out solving the problem among the cores.

Data Parallelism

- Definition: each process does the same work on unique and independent pieces of data
- Examples:
 - 8 farmers mowa lawn
 - 2 farmers paint a storage area

- Usually more scalable than functional parallelism
- Can be programmed at a high level with OpenMP

Task Parallelism

- Definition: each processor executes a different process/ thread (same or different code) on the same or different data.
- Usually each processor executes a different process or an independent program
- Processes communicate with one another as they work by passing data from one process/thread to the next
- More suitable for distributed computation
- Examples:
 - Independent Monte Carlo Simulations
 - > ATM Transactions

Example follows..

Professor P

15 questions 300 exams

Professor P's grading assistants

Division of work – data parallelism

Division of work – task parallelism

TA#1

Questions 1 - 5

TA#3

Questions 11 - 15

Questions 6 - 10

TA#2

Division of work -data parallelism

```
sum = 0;
for (i = 0; i < n; i++) {
    x = Compute_next_value(. . .);
    sum += x;
}</pre>
```

Division of work –task parallelism

```
if (I'm the master core) {
    sum = my_x;
    for each core other than myself {
        receive value from core;
        sum += value;
} else {
        send my_x to the master;
} () Receiving
} Addition
```

Terminology (1/3)

- Serial code is a single thread of execution working on a single data item at any one time
- Parallel code has more than one thing happening at a time.
 This could be
 - Multiple threads of execution in a single executable on different data
 - Multiple executables (processes) all working on the same problem (in on or more programs)
 - Any combination of the above
- Task is a program or a function.
 - Each task has its own virtual address space and may have multiple threads

Terminology (2/3)

- Traditional CPU: a single central processing unit (CPU) on a chip.
- Multi-core processor/ socket: A single chip containing two or more CPUs called "cores
- A node may have multiple cores...

Terminology (3/3)

 Node: a actual physical self contained computer unit that has its own processors, memory, I/O bus and storage.

Coordination

- Cores usually need to coordinate their work.
- Communication one or more cores send their current partial sums to another core.
- Load balancing share the work evenly among the cores so that one is not heavily loaded.
- Synchronization because each core works at its own pace, make sure cores do not get too far ahead of the rest.

Type of parallel systems

Shared-memory

- The cores can share access to the computer's memory.
- Coordinate the cores by having them examine and update shared memory locations.

Distributed-memory

- Each core has its own, private memory.
- The cores must communicate explicitly by sending messages across a network.

Type of parallel systems

Shared-memory Distributed-memory

Terminology

 Parallel computing – a single program in which multiple tasks cooperate closely to solve a problem

Distributed computing – many programs
 cooperate with each other to solve a problem.

Time for a Break?

Part 2

Parallel Hardware and Parallel Software

Past: Serial hardware and software

The von Neumann Architecture

von Neumann bottleneck

MODIFICATIONS TO THE VON NEUMANN MODEL

PARALLEL HARDWARE

Flynn's Taxonomy

classic von Neumann SISD (SIMD) Single instruction stream Single instruction stream Single data stream Multiple data stream **MISD** (MIMD) Multiple instruction stream Multiple instruction stream Single data stream Multiple data stream

Flynn's Parallel Architecture Taxonomy (1966)

- SISD: single instruction single data traditional serial processing!
- MISD: rare multiple instructions on a single data iteme.g., for fault tolerance!
- SIMD: single instruction on multiple data!
 - Some old architectures with a resurgence in accelerators!
 - Vector processors pipelining!
- MIMD: multiple instructions multiple data almost all parallel computers!

https://computing.llnl.gov/tutorials/parallel_comp/ #Terminology

Single Instruction, Single Data (SISD)

- A serial (non-parallel) computer
- Single Instruction: Only one instruction stream is being acted on by the CPU during any one clock cycle
- Single Data: Only one data stream is being used as input during any one clock cycle

SIMD (Single Instruction Multiple Data)

Parallelism achieved by dividing data among the processors.

Applies the same instruction to multiple data items.

Called data parallelism.

SIMD example

SIMD

- What if we don't have as many ALUs as data items?
- Divide the work and process iteratively.
- Ex. m = 4 ALUs and n = 15 data items.

Round3	ALU ₁	ALU ₂	ALU ₃	ALU ₄
1	X[0]	X[1]	X[2]	X[3]
2	X[4]	X[5]	X[6]	X[7]
3	X[8]	X[9]	X[10]	X[11]
4	X[12]	X[13]	X[14]	

SIMD drawbacks

- All ALUs are required to execute the same instruction, or remain idle.
- In classic design, they must also operate synchronously.
- The ALUs have no instruction storage.

 Efficient for large data parallel problems, but not other types of more complex parallel problems.

SIMD example: Vector processors

- Operate on arrays or vectors of data
- Advantages:
 - Fast, Easy to use
 - Good vectoring compilers
 - High memory bandwidth.
- Disadvantages:
 - don't handle irregular data structures
 - Scalability

Not pure SIMD: Graphics Processing Units (GPU)

 Real time graphics application programming interfaces or API's use points, lines, and triangles to internally represent the surface of an object.

Graphics Processing Unit (GPU)

- A specialized electronic circuit with thousands of cores that are specifically designed to perform data-parallel computation
- It process multiple elements in the graphics stream.

GPUs: how they work

- Can rapidly manipulate and alter memory to accelerate the creation of images for output to a display
- Each pixel is processed by a short program before it was projected onto the screen

Other Applications

GPUs are used as vector processors for non-graphics applications that require repetitive computations.

Multiple Instruction, Single Data (MISD):

- Multiple Instruction: Each processing unit operates on the data independently via separate instruction streams.
- Single Data: A single data stream is fed into multiple processing units.
- Few (if any) actual examples of this class of parallel computer have ever existed.

MIMD (multiple Instructions Multiple Data)

- Multiple Instruction: Every processor may be executing a different instruction
- Multiple Data: Every processor may be working with a different data
- Typically consist of a collection of fully independent processing units or cores, each of which has its own control unit and its own ALU.

- Shared memory
- Distributed memory
- > Hybrid!

Cray XT3

Workers with same objective, doing completely different things

Shared Memory System (1/2)

 Multiple processing units accessing global shared memory using a single address space

- Shared memory systems are easier to program
 - User responsible for synchronization of processors for correct data access and modification
- Scaling to large number of processors can be an issue

Share Memory Access (2/2)

Two types of shared memory systems based on access type:

UMA: Uniform Memory Access – all memory is "equidistant" from all processors

Memory access can become a bottleneck

NUMA: Non-Uniform Memory Access – local memory versus distant memory

- Requires more complex interconnect hardware to support global shared memory
- Also called Distributed shared memory systems

Distributed Memory System

 Multiple processing units with independent local memory and address spaces

Processors + Memory

- Systems are easier to scale
- No implicit sharing of data user is responsible for explicit communication of data amongst processors

Interconnection Networks

Topologies:

- Network characteristics:
 - Latency (/): time it takes for a link to transmit a unit of data (sec)
 - Bandwidth (b): rate at which data is transmitted (bytes/sec)
 - Message transmission time for n bytes = I + n/b
 - Bisection (band)width: a measure of network quality number of links connecting two halves of a network

Toroidal Mesh

Fully Connected

PARALLEL SOFTWARE

The burden is on software

- In shared memory programs:
 - > Start a single process and fork threads.
 - > Threads carry out tasks.
 - Share a common memory space
- In distributed memory programs:
 - > Start multiple processes.
 - Processes carry out tasks.
 - No shared memory space
 - Data is communicated between each other via message passing

Approaches to Parallel Programming

- Shared memory programming: assumes a global address space –data visible to all processes.
 - Issue: synchronizing updates of shared data
 - Software Tool: OpenMP
- Distributed memory programming: assumes distributed address spaces – each process sees only its local data.
 - Issue: communication of data to other processes
 - Software Tool : MPI (Message Passing Interface)

Writing Parallel Programs

- 1. Divide the work among the processes/threads
 - (a) so each process/thread gets roughly the same amount of work
 - (b) and communication is minimized.

```
double x[n], y[n];
...
for (i = 0; i < n; i++)
x[i] += y[i];
```

- 2. Arrange for the processes/threads to synchronize.
- 3. Arrange for communication among processes/threads.

Shared Memory: Nondeterminism

Thread
$$1 > my_val = 19$$

Thread $0 > my_val = 7$

Thread $0 > my_val = 7$ Thread $1 > my_val = 19$

Shared Memory: Nondeterminism

Time	Core 0	Core 1 In call to Compute_val		
0	Finish assignment to my_val			
1	Load x = 0 into register	Finish assignment to my_val		
2	Load my_val = 7 into register	Load $x = 0$ into register		
3	Add my_val = 7 to x	Load my_val = 19 into register		
4	Store $x = 7$	Add my_val to x		
5	Start other work	Store x = 19		

Shared Memory: Nondeterminism

- Race condition
- Critical section
- Mutually exclusive
- Mutual exclusion lock (mutex, or simply lock)

```
my_val = Compute_val ( my_rank );
Lock(&add_my_val_lock );
x += my_val;
Unlock(&add_my_val_lock );
```

Shared Memory: busy-waiting

Distributed Memory: message-passing

```
char message [100];
                                     Local variable
my_rank = Get_rank();
if (my_rank == 1) {
  sprintf (message, "Greetings from process 1");
   Send (message, MSG_CHAR, 100, 0);
} elseif (my_rank == 0) {
   Receive (message, MSG_CHAR, 100, 1);
  printf ("Process 0 > \text{Received: } \% \text{s/n"}, \text{message});
```

Input and Output

- In distributed memory programs, only process 0 will access stdin.
- In shared memory programs, only the master thread or thread 0 will access stdin.
- In both distributed memory and shared memory programs all the processes/threads can access stdout and stderr.

PERFORMANCE

Speedup

Number of cores = p

- Serial run-time = T_{serial}
- Parallel run-time = T_{parallel}

Speedup of a parallel program

$$S = \frac{T_{\text{serial}}}{T_{\text{parallel}}}$$

Speedup is at most p.

Efficiency of a parallel program

$$\begin{array}{c|c} E & = & S & & T_{\text{serial}} \\ \hline p & p & & p & T_{\text{parallel}} \\ \end{array}$$

Efficiency is at most 1.

Speedups and efficiencies of a parallel program

p	1	2	4	8	16
S	1.0	1.9	3.6	6.5	10.8
E = S/p	1.0	0.95	0.90	0.81	0.68

Efficiency decreases as processors increase...

Speedups and efficiencies of parallel program on different problem sizes

-	p	1	2	4	8	16
Half	S	1.0	1.9	3.1	4.8	6.2
	E	1.0	0.95	0.78	0.60	0.39
Original	S	1.0	1.9	3.6	6.5	10.8
- 1111	\boldsymbol{E}	1.0	0.95	0.90	0.81	0.68
Double	S	1.0	1.9	3.9	7.5	14.2
	E	1.0	0.95	0.98	0.94	0.89

For a fixed p, Efficiency increases as the size of the problem increases..

Speedup

- > Speedup increases as the size of the problem increases...
- Speedup increase decreases as processors increase...

Efficiency

Efficiency decreases as the processors increase more when the size of the problem decreases..

Effect of overhead

$$T_{parallel} = T_{serial} / p + T_{overhead}$$

Amdahl's Law

- Amdahl's Law shows a theoretical upper limit for speedup In reality, the situation is even worse than predicted by Amdahl's Law due to:
 - Load balancing (waiting)
 - Scheduling (shared processors or memory)
 - Communications
 - > I/O

Example

- We can parallelize 90% of a serial program.
- Parallelization is "perfect" regardless of the number of cores p we use.
- T_{serial} = 20 seconds
- Runtime of parallelizable part is

$$0.9 \times T_{\text{serial}} / p = 18 / p$$

Example (cont.)

Runtime of "unparallelizable" part is

$$0.1 \times T_{\text{serial}} = 2$$

Overall parallel run-time is

$$T_{parallel} = 0.9 \text{ x } T_{serial} / p + 0.1 \text{ x } T_{serial} = 18 / p + 2$$

Example (cont.)

Speed up

$$S = \frac{T_{\text{serial}}}{0.9 \text{ x T}_{\text{serial}} / \text{ p + 0.1 x T}_{\text{serial}}} = \frac{20}{18 / \text{ p + 2}}$$

Scalability

- In general, a problem is scalable if it can handle ever increasing problem sizes.
- If we increase the number of processes/threads and keep the efficiency fixed without increasing problem size, the problem is strongly scalable.
- If we keep the efficiency fixed by increasing the problem size at the same rate as we increase the number of processes/threads, the problem is weakly scalable.

Shared Memory: OpenMP

- OpenMP: a standard API to support shared memory parallel rogramming
 - Managed by the OpenMP Architecture Review Board, OpenMP v1.0 was released in 1997, latest v3.1 released July 2011
- A directive-based approach to control:
 - Parallel threads: Master thread creates parallel worker threads and the work is divided amongst the workers
 - Data sharing: assumed a global address space
- Major components:
 - Parallel control structure
 - Work sharing
 - Data sharing and control
 - Synchronization
 - Other runtime functions

Example: Sum of Squares

```
Forks off the threads and starts the
                                         work-sharing construct; declares
long sum = 0, loc_sum;
                                         thread id and loc sum private
int thread id;
#pragma omp parallel private(thread_id, loc_sum)
                                                     Each thread
                                                     retrieves its own id'
loc sum = 0;
                                                           Parallel for splits
thread_id = omp_get_thread_num();
                                                           loop range across
                                                           the threads.
#pragma omp for
for(i = 0; i < N; i++) loc_sum = loc_sum + i * i;
                                                            Each thread
                                                            computes and prints
                                                           its id and local sum
printf("\n Thread %i: %li\n", thread_id, loc_sum);
#pragma omp critical
                                             Threads cooperate to update
sum = sum + loc sum;
                                             global variable one by one
printf("\n Sum of Squares = %li", sum);
                                                            Master thread
                                                             prints result
```

2012 Summer Short Course for Earth System Modeling and Supercomputing

SA High End Computing Capability

OpenMP comments

√ Plus:

- Very simple to use
- High level parallel directives
- Not getting in low-level (thread) programming

↓ Drawbacks

- You can not use more than one cores using OpenMP
 - (due to the shared memory between threads)
 - To do so use need to use hybrid (openMP/MPI) parallel programming

Distributed Memory: MPI

- MPI (Message Passing Interface): a standard message passing library specification to support process communication on a variety of systems
 - MPI v1.0 (June 1994), latest MPI v2.2 (Sept 2009)
- MPI assumes a distributed address space, i.e., each process (rank) sees only local variables with explicit constructs to communicate data to other processes

MPI Features

- MPI-1
 - General: Init/finalize, Communication group size/rank
 - Point to Point communication:
 - send, recv with multiple modes (blocking/non blocking, ...)
 - Collective communication:
 - Barrier for synchronization
 - Broadcast
 - Gather/scatter
 - Reduction operations (built-in and user defined)
- MPI-2
 - One-sided communication: Put, Get, Accumulate
 - Extensions to collectives
 - Dynamic process management

MPI code: sum of squares

```
Number of
                                                                Each process
int num_tasks, my_rank, rc;
                                   processes
                                                                retrieves its rank'
int sum, loc sum, N = ...;
MPI Init();
MPI Comm size(MPI COMM WORLD, &num tasks);
                                                               Each process computes
                                                               and prints its rank and
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
                                                               local sum
   for(i = 0; i < N; i += numtasks) loc sum = loc sum + i * i;
   printf("\n Thread %i: %li\n", my rank, loc sum);
                                                                Each process sends
                                                                local sum to rank 0
   if (my rank != 0)
         rc = MPI Send(loc sum, 1, MPI INTEGER, 0, my rank, ...);
   else
        sum = loc sum
        for (i = 1; i < num tasks; i++) {
            rc = MPI Recv(&loc sum, 1, MPI INTEGER, i, i, ... );
            sum = sum + loc sum
                                                                  Rank 0 receives
                                                                  data from all other
        printf("\n Sum %i: %li\n", my_rank, loc_sum);
                                                                  ranks, computes
                                                                  and prints result
MPI Finalize();
```

Example: Pi Calculation with openMP

```
x=0;
                Serial: 1
                              sum = 0.0;
                              step = 1.0/(double) num_steps;
                              for (i=0; i < num steps; ++i) {
                                  x = (i+0.5)*step;
                                  sum = sum + 4.0/(1.0+x*x);
Parallel code:
                              pi = step * sum;
      x=0;
   sum = 0.0;
       step = 1.0/(double) num steps;
 4 #pragma omp parallel private(i,x,aux) shared(sum)
 6 #pragma omp for schedule(static)
         for (i=0; i < num steps; i=i+1){
            x=(i+0.5)*step;
            aux=4.0/(1.0+x*x);
10
11 #pragma omp critical
12
           sum = sum + aux;
13
14
15
      pi=step*sum;
```

High Performance Computing at EUC

- Astrophysics and High Performance Computing Research Group (http://ahpc.euc.ac.cy)
 - Applying HPC for developing efficient solutions
 Currently:
 - in Astrophysics
 - In Galaxies evolution

Future plans:

- in Health Sciences
- Medical imaging
- more

HST IMAGE OF 08572+3915

AHPC Research Group

Head: Prof. Andreas Efstathiou

Members:

Ass. Prof. Vicky Papadopoulou

- Researchers:
 - Natalie Christopher
 - Andreas Papadopoulos
- Phd students
 - Elena Stylianou

- Michalis Kyprianou (Bachelor CS, EUC)
- Andreas Howes (Bachelor CS, EUC)

Parallel Processing in Python

In another Colloquium's talk!

